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of velocity are not required by the new technique, parameterization of the medium is simplified, and
reflection and transmission of beams can be calculated by applying Snell's law to both vicinity and
certral rays. Conversion relations between VRT and DRT can be used to determine the paraxial
vicinity of DRT, in which the errors of the paraxial approximations of DRT remain small. In
either DRT or VRT, the width of Gaussian beams can be physically defined from the width of the
Fresnel volume surrounding the central ray. Because no paraxial approximations are made, the
superposition of the Gaussian beams define from the vicinity rays should exhibit a much slower
breakdown in accuracy as the scale length of the medium given by v/IVy approaches the beamwidth.

In Section II, VRT is used to determine the focusing/defocusing and multipathing induced by
the Aleutian slab on the P waves radiated by Aleutian nuclear tests. The geographic pattern of
amplitude anomalies predicted from slab models proposed from modeling of P travel time anomalies
is consistent with the observed geographic distributiop of mob anomalies from the Aleutian tests and
the results of studies of P waveforms observed from shallow focus earthquakes occuring within the
Aleutian island ridge. A broad zone of reduced P amplitudes is predicted at northerly azimuths at
distances greater than 700. This shadow zone is also likely to be associated with pulse broadening
of long period and broadband waveforms. A network average of mb for shallow focus events on
Amchitka Island is predicted to underestimate the true size of the event by as much as 0.4 mb units
if all stations in the network average are located within the shadow zone of the slab. For the most
probable distribution of stations used in rab estimates of the Aleutian tests, this bias is reduced to a
negative bias of 0.1 mb units. Due to the large areal overlap of European and Canadian stations with
the slab shadow zone, weighting of stations by focal sphere solid angle in a network average cannot
reduce this negative bias much below 0.07 mb units. The documented existence of a similar defo-
cusing anomaly beneath a portion of NTS, however, may eliminate the need of making a correction
for relative focusing and defocusing when comparing rb's of Aleutian tests with those of NTS tests.

Virtually all regional phases can be strongly affected by vertical velocity gradients. The best
known effects are on the Pn and Sn, in which small changes in the vertical velocity gradient beneath
the Moho produce large changes in the decay of Pn and Sn with distance. Methods of synthesizing
complete regional seismograms often inadvertently ignore the effect of crustal gradients by param-
eterizing the Earth model with thick, planar homogeneous layers. To address this problem we

describe in Section III a modification of the locked mode method of synthesizing complete regional
seismograms to include the Langer uniform asymptotic approximation to vertical wavefunctions
within layers having linear vertical velocity gradients. Synthesis of complete regional seismograms
using the Langer-locked mode confirm that the Pn and Sn phases are strongly affected by the
magnitude of the velocity gradients beneath the Moho, but that Lg is only weakly affected by the
details of crustal layering.

Tests were made to quantify the error in the use of the Langer approximation as the magnitude
of the vertical gradient increases and/or frequency decreases. At sufficiently small magnitude of
gradient and/or high frequency, good agreement can be obtained between synthetics computed
using the Langer-locked mode method, the colocition method, and the conventional locked mode
method in models parameterized by thin homogeneous layers. Errors introduced by the use of the
Langer approximation in calculated pole positions, residues, and eigenfunctions are bounded by 5%
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for frequencies I _ 5 IVV. An upper bound to the error in the time domain c.n be estimated from
this inequality using either the peak frequency in a narrow pass band or the lowest frequency in a
broad pass band. When 10 or more thin homogeneous layers are required to represent accurately
the seismic wavefield in a gradient laver, it is usually more efficient to represent the gradient layer
by continuously varying functions in the vertical direction and employ the Langer approximation.
provided the errors in the Langer approximation remain within acceptable limits. By reducing the
number of parameters needed to describe an earth model, the Langer-locked mode method simplifies
the inerse problem of determining structure using observed and synthetic complete seismograms.
It also facilitates the use of known relations for the effects of continuously varying pressare and
temperature on elastic moduli and density.
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TECHNICAL SUMMARY

The objective of this project is to determine the yield bias of underground nuclear tests induc-!d by

the presence of a high velocity descending slab beneath the test site. Specifically, the effect of the

Aleutian slab is being investigated on the US underground tests Longshot, Milrow, and Cannikan.

P wave seismograms will be synthesized using dynamic ray tracing and superposition of Gaussian

beams in three-dimensional models of the Aleutian slab determined from P travel time delays.

Focusing and defocusing and multipathing at teleseismic distances will be evaluated by comparison

of observed with synthetic seismograms of the Aleutian tests.

To calculate effects of focusing and defocusing of three dimensional slab structure an alternative

method of dynamic ray tracing and Gaussian beam superposition was developed, requiring a fewer

number of equations to be integrated along ray and eliminating the need to evaluate second spatial

derivatives of velocity. We term this method vicinity ray tracing. Its derivation and application is

described in a reprint, which is included as the section I of this report.

This method was applied to predict the amplitudes of P waves radiated by nuclear tests in the

Aleutians using three dimensional models of the Aleutian slab proposed from the fitting of P travel

time residuals of Aleutian seismic events. Section II compares these synthetic amplitudes with

observed distributions of mb residuals of Aleutian tests. The results demonstrate that a network

average of mb measured from stations concentrated in the shadow zone of the Aleutian slab can

lead to an underestimate of the size of seismic events in the Aleutian island ridge by up to 0.4rn 6

units compared to the same size events located in regions unaffected by focusing and defocusing.

This underestimate is reduced to 0.1 mb units for the most probable distribution of stations in a



network avcu-age of inb. Azimuthal weighting of stations in such an average will not significantly

seduce this underestimatc because-of the large areal extent of the slab shadow zone and its overlap

with a large concentration of European and Canadian seismic stations. The need for a relative

correction for focusing and defocusing effects in comparisons of NTS and Aleutian tests, however,

may nct be justified due to the documented presence of a defocusing structure beneath at least a

portion NTS that can produce a similar sized negative mb bias.

Section III is preprint of a paper accepted for publication, which treats a problem important

to nuclear monitoring at regional distance. The locked mode method of synthesizing complete

regional seismograits was modified to include the Langer uniform asymptotic approximation to

vertical wavefunctions within layers having linear vertical velocity gradients. Computational ex-

perinients were made to (1) quantify the breakdown in the asymptotic approximation to the vertical

wavefunctions as frequency d6creases ant /or magnitude of the vertical gradient increases and to

(2) illustrate and review some o" fthe etiects -f the vertical velocity gradients on the propagation of

regional phases. This preprint is an update of the paper included in the third technical report of

this project. It includes additional examples and tests not shown in that report as well corrections

of equations given hi appendices. It, conclusions are unchanged from those given in the earlier

draft.
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SUMMARY
A method for computing seismic wavefields in a high-frequency approximation is
proposed based on the integration of the kinematic ray tracing equations and a new
set of differential equations for the dynamic properties of the wavefront, which we
call the vicinity ray tracing (VRT) equations. These equations are directly obtained
from the Hamiltonian in ray centred coordinates, using no paraxial approximations.
This system is comparable to the standard dynamic ray tracing (DRT) system, but it
is specified by fewer equations (four versus eight in 3-D) and only requires the
specification of velocity and its first spatial derivative along a ray. The VRT
equations describe the trajectory of a ray in the ray centred coordinates of a
reference ray. Quantities obtained from vicinity ray tracing can be used to
determine wavefront curvature, geometric spreading, traveltime to a receiver near
the reference ray, and the KMAH index of the reference ray with greater numerical
precision than is possible by differencing kinematically traced rays. Since second
spatial derivatives of velocity are not required by the new technique, parametriza-
tion of the medium is simplified, and reflection and transmission of beams can be
calculated by applying Snell's law to both vicinity rays and central rays. Conversion
relations between VRT and DRT can be used to determine the paraxial vicinity of
DRT, in which the errors of the paraxial approximations of DRT remain small. In
either DRT or VRT, the width of Gaussian beams can be physically defined from
the width of the Fresnel volume surrounding the central ray. Because no paraxial
approximations are made, the superposition of the Gaussian beams defined from
vicinity rays should exhibit a much slower breakdown in accuracy as the scale length
of the medium given by v/IVvl approaches the beamwidth.

Key words: asymptotic ray theory, dynamic ray tracing, seismic wavefields.

I INTRODUCTION The DRT equations can be derived from either the
eikonal equation by substitution of a paraxial approximation

Many high-frequency asymptotic solutions of the wave (terven & Hron 1980; (erven 1985), or from the
equation have been developed as effective tools for arabolic wave equation (terven, et al. 1982; Popov 1982;
computing wave fields in inhomogeneous 3-D media. Two of Cervenq & Pen~ik 1983). The DRT equations have both
the most widely applied aze the WKBJ/Maslov method limitations and complications. The limitations are associated
(Chapman 1978. Chapman & Drummond 1982) and the with the use of the paraxial approximation, and the
Gaussian beam method (Babit & Kirpi nikova 1979, Popov complications are due to the use of multiple coordinate
1982; Cerven , Popov & Pgen~ik 1982; 1 erven, & Pgen~ik systems.
1983) Both uf these teihniques stiri.at the kinematic and The limitations associated with the paraxial approxima-
iynamh. properties of a wavefront from approximate tion are exhibited whenever the DRT equations are used to
solutiun, to the elastodynamiL ikaxe eqatiun based on ray estimate the traveltime and amplitude at a point in the
theory The superposition te4hniques of Gaussian beams neighbourhood of a ray from a second-order Taylor
,iod WKBJ plane w,.ves as well as their statiosiary phase expansion of the wavefront at a point along the ray. The
appruxrmdtiun in geumetr%. a theory di require similar Taylor expans.on is the essential step in the definition of
amplitude an, s eighting functions. These amplitude Gaussian beams an paraxial rays. The region in which the
fun,.tiur, "r., 1,. fuund by ,it.-biating i system of kquations error of this Taylor expansion remains below some specified
knocn ais the dynamric ray tracing (DRT) equations. threshold is generally referred to as the paraxial vicmity.
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IV. Kim and V. F. Cormier

The fundamental problem with the paraxial approximation
is that it is not simple to specify the spatial bounds of the
paraxial vicirity in a three-dimensionally varying model. In
general, one must not attempt to evaluate the Taylor
expansion too far from the central ray. but it is unknown
how the error grows away from the central ray.

The complications associated with the use of two
coordinate systems are best appreciated by considering the
most general case of a three-dimensionally varying medium. W ( 7
In three-dimensionally varying media, the usual approach is
to specify the DRT equations using two coordinate systems:
ray coordinates, usually consisting of the take-off
angle/azimuth at the source, and ray centred coordinates,
consisting of an orthogonal curvilinear system that moves
along with the ray (Fig, 1). The use of two coordinate e2
systems, while having the advantage of converting a
non-linear Ricatti equation into a system of linear Figu,-c 2. The geometry of the vicinity ray tracing system: ij, is the
equations, increases the number of equations needed to angle difference between the tangential vector I of a central ray and
describe the quantities affecting the amplitude of the the tangential vector of a vicinity ray in the !-i, plane. q, is the

distance between the central ray and the vicinity ray in the i-,wavefield. In either the fixed Cartesian or ray centred plane at S.
coordinates, the standard DRT equations require the
specification ef the second spatial derivatives of velocity
along a ray. This either forces the model to be parametrized beamwidth of the Gaussian is taken to be the half-width of
with continuous first derivatives of velocity or complicates the beam Fresnel volume surrounding the central ray. The
the integration by requiring jump conditions on the dynamic outermost vicinity ray in a beam Fresnel volume has a
quantities. These jump conditions are obtained by matching half-period traveltime difference with respect to that of the
the paraxially estimated phase on either side of a central ray. Since beamwidths are related to the beam
discontinuity in gradient (Cerveng & Hron 1980; Cerveng Fresnel volume, diffracted wavefields can be accurately
1985). estimated by a superposition of Gaussian beams without the

In this paper, we develop alternative methods for ambiguity associated with a freely varying beamwidth
calculating wavefront curvature, geometric spreading, and parameter. The geometrical spreading of a wavefront is
the widths of Gaussian beams that eliminate many of these computed from the conservation law of energy in VRT,
problems. These alternative methods are based on rather than from the direct solution of the transport
quantities calculated from a system of equations for the path equation as in DRT.
of a ray near a reference ray (Fig. 2). This nearby or In the following sections we first review the derivation of
'vicinity' ray may be calculated exactly by the kinematic ray the standard DRT system and the limitations of the paraxial
tracing equations, with geometric spreading and wavefront approximation. Next the vicinity ray tracing system is
curvature estimated by ray differencing (Gajewski & derived from the Hamiltonian, in which no paraxial
Pgentik 1987), or determined approximately by integrating a approximations are made. Expressions for the traveltime
system of equations we refer to as the 'vicinity ray tracing and wavefront curvature in the neighbourhood of a central
system tVRT)'. Gaussian beams are defined by assigning a ray are derived using this system. Gaussian beams are
Gaussian distribution of amplitude to each central ray. The defined using vicinity rays to approximate the beam Fresnel

volume. The accuracy of estimated geometrical spreading,
ray trajectory, and the traveltimes of vicinity rays is tested

e, and compared in a simple I-D model using VRT and DRT.
AFinally, seismograms are synthesized and compared in the

same model using a superposition of Gaussian beams
qt aderived from VRT and the WKBJ method.

e "2 A REVIEW OF DYNAMIC RAY TRACING

-, (DRT)

2.1 Ray centred coordinates

X, Consider an arbitrary ray corresponding to a P-wave and
introduce ray centred coordinates s, q,, q2 (Fig. 1). The

Figure 1. The ray centred coordinates (s. q1, q2) ? is the unit orthogonal ray centred coordinate system along the central
tangent vector of a central ray and el and e, are the unit normal ray 2 and its computations are described in Popov &
vectors to L The coordinate s measures the arclength along a Pgenik (1978), and lterven & Hron (1980). The ray
central ray from an arbitrary reference point, q, and q2 represent centred coordinates are limited to a vicinity of the origin
length coordinates and form a 2-D orthogonal coordinate system in (q, = 0) in which the central ray field is regular. In Fig 1,
the plane normal to 9 at 0. the coordinate s measures the arclength along a central ray

4
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from an arbitrary reference point. q, and q2 represent given by (Cerveng & Hron 1980)
length coordinates and form a 2-D Cartesian coordinate
system in the plane normal to Q at 0, with origin at 9. All h = I +S-qq. (7)
three components (s, q, q2) in the ray centred coordinate V
system depend on the azimuth and vertical take-off angle Because the first-order term of h is neglected in equation
(0p, 6). The basis of the coordinate system forms a (4), the term (2u.qlv)q of hl in equation (4) must be
right-handed system of the three unit vectors i, e, and ) vanishly small. i.e.,

where i is the unit tangent vector to the central ray 9.
2 q << 1. (8)

2.2 The paraxial approximation and its limitations v

The standard DRT system can be denved from either the The condition in equation (8) describes the applicability of
eikonal equation (Cerven9 & Hron 1980; Madanaga 1984; the DRT system. It says that extrapolation of the wavefield
Cerveny 1985) or from the parabolic wave equation (Popov at a distance q, away from a central ray using the paraxial
1982; Cerven & PMen~ik 1983). In either derivation, a approximation will break down rapidly as the scale length of
paraxial approximation is assumed at some stage, which the medium decreases, where the scale length I is defined by
involves a Taylor expansion of the wavefield about the l=v/jVvl. The extrapolation distance must be much less
central ray. The terms are omitted in approximations often than the scale length of the medium. For Gaussian beams, it
without specifying validity conditions. implies that the beam width must be much less than the

To illustrate the problems with the DRT system, let us scale length of the medium. This can be a severe restriction
review the denvation of the 2-D DRT equations starting in rapidly varying models, in which the criterion for validity
from the eikonal equation. The eikonal equation in 2-D is of ray theory (wavelength << scale length) is still well

satisfied.
1 (ar)2 (arl= 1

It s 9 ,q V! (1) 2.3 The P and Q matrices

where V = v(s, q). h is a scale factor in the ray centred Equation (6) is a non-linear ordinary differential equation of
coordinates and will be discussed subsequently. The the first-order Ricatti type. This equation can be solved by
traveltime of a vicinity ray r(s, q) can be approximated at elementary analytical methods. Following erven & [-iron
q = 0 (terven & Hron 1980; lerven & Pgen~ik 1983; (1980), the 2-D system given by equation (6) can be
Cerven 1985) by: generalized to a 3-D system of linear differential equations

by introducing a 2 x 2 matrix M:
r(s, q) r(s) + M(s)q 2  (2) dQ

where arlaq =0 and M=ar(s, q)/aq2 . From equation M=v- ' Q -  (9)
(2), it follows that

where Q is a 2 x 2 matrix. Define a 2 x 2 matrix P as
Sr(s, q) = Mq, (3) d.

aq =P = V d (10)

where v = v(s, 0). Substituting equation (3) into (1) and
neglecting higher order t.rms gives Substituting equations (9) and (10) into equation (4), the

dynamic ray tracing equations in 3-D can be written as

h 2V M)q=v 2  h2 . (4) dQ dP I
=VP, - -- S0,

ds ds v
The right side of equation (4) can be approximated by
expanding the velocity V up to second-order terms with where Q, = aq,/ay,, P, = 3PJp/y, and y, are ray parameters
respect to v, (usually take-off angles). S is given as

1 1 1 ,(5) (. 1 V' 2)
V2v h- -~vqqq (5 1,12V2/

(( erven9 & HIron 1980; erven & P~en~ik 1983; erven# The DRT system has eight equations for real Q and P,
1985), where v qq = 62vaq. The standard DRT system is and 16 for compiex Q and P in 3-D and is specified in ray
obtained from equation (4) by using equation (5) and centred coordinates (s, q,, q2) and ray coordinates (yi, Y2).
expanding up to second order. This gives Iterveny (1985) has shown that only eight equations are

dM generally needed for Gaussin beams. The DRT system
S + + q -0. (6) generally will have off-diagonal terms in the matrices Q and

P. The existence of these off-diagonal terms is due to the use
Since the denation of the DRT system inciudes of two coordinate systems in descnbing the equations. The

cOond order terms, any omitted terms must be carefully number of equations can be reduced further if only one
evaluated. Consider the scale factor h. The scale factor h is coordinate system could be used.

5
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2.4 Gaussian beams over the Langrangian, L, by

Approximate and non-singular solutions of the elastic r ' L(q,, 4,) dy, (13)
wavefield can be found in the vicinity of caustics and regions
of diffraction by superposing Gaussian beams constructed
from complex Q and P matrices. A proper mathematical or where ?i = dq,/ds. The Hamiltonian in ray centred
physical meaning of complex parameters in the Q and P coordinates can be obtained from the Lagrangian. The
matrices, however, is not usually considered in routine Lagrangian in ray centred coordinates is given as
applications of the method. Complex Q and P can be shown
to be a consequence of an approximate solution for complex L(q 1, q2, q1, 2, s) = (h2  . 2 (14)
rays emanating from a source having a small imaginary part V
to its location in space (Felsen 1984; Wu 1985). In practice, where
beamwidths are defined somewhat arbitrarily and are
adjusted to minimize errors in the beam superposition h = h,= + 2 , (15)
(Klimed 1988; Kim & Garmany 1985) or tuned to minimize ,V

errors associated with rapid variations in velocity (Weber
1988). White et al. (1987) have shown that optimum and where 4, =dq,/ds, v., =avlaq, and h2 = h3 = 1.
beamwidths strongly depend on the specific wave oropaga- V =v(s, q, q2) is the velocity of a vicinity ray and
tion problem and the particular type of boundary v = v(s, 0, 0) is the velocity of a central ray. The Lagrangian
interactions occurring in the problem. One of the reasons in equation (14) has s as an independent variable. The
why the concept of optimum beamwidths does not work well conjugate momentum pi can be expressed as
is that the energy of each beam differs for different initial
beamwidths. This is true for all of the various optimal OL 1 4 1
beamwidths that have been proposed. If energy flux is to be P 4, V V= Th + ? +4
conserved within a ray tube, then a normalization condition aL 1 q2  (16)
must be applied with respect to the different initial P2= - - 7
beamwidths. The following section, which introduces the aq2 VT/Z+T +i
vicinity ray tracing system, discusses how such a
normalization condition can be implemented and how beam Equations (16) can be solved for 4i and 42, yielding
width in both the DRT and VRT systems can be physically
related the Fresnel zone surrounding a central ray. - Vhp I

q IV,(P,, + ,

3 TIlE VICINITY RAY TRACING (VRT) ?2= VhP2  (17)

SYSTEM vi-= V(P It+pA)
3.1 Derivation The Hamiltonian, H, is expressed as follows:
Let us consider the high.frequency asymptotic solution to
the wave equation in an rnhomogeneous medium. In order H(ql, q2,P1,P 2 ,s)=pi4h +P 242
to obtain the desired approximation, let us assume that the - L(qI, q2, 4i, 42, s). (18)
Fourier component of displacement u for frequency w is
expressed in the following form in a generalized coordinate By substituting equations (17) into equation (18), the
system: Hamiltonian in ray centered coordinates is obtained;

u (q,, o ) A (q,)e ( 12)h .2 (12) h

where t I. 2. . t is an -dimensional configuration space H(q, q2, Pi, P2, S) V (P! +P2) (19)

whose coordinates are the n generalized coordinates q,. A
and r are an amplitude function and a phase function The eikonal equation can be derived from the
respectively. Both A and r are functions which can be Hamiltonian by using the Hamilton-Jacoby partial
assumed to be siowly varying with respect to the wavelength differential equation with respect to the arclength s
A. The Hamiltonian and the conservation law of energy flux (Goldsten 1980):
along the wavefron' aic applied in this study to determine at - ar -

the functions A and r. - ( q2, t(20)

Since Fermat's principle of least time can be expressed by as q aq 22
the opt.Liatun., uf variatiunal calculus. a Lagrangian and the Squaring both sides of equation (20) produces the eikona!
lamiltonian can be defined similar to those used in equation in ray centred coordinates:
describing the mechanics of particles. For examplz, Farra &
Madariaga (1987) used the Hamiltonman to develop a a r2 1 , at1\2 / at or (Vt) 2 (

perturbation theory to compute the amplitude and h/s T aqiq)-aq2)
traveltime of a vicinity ray with respect to a reference ray.

By applying Fermat s principle, the traveltime r from The VRT system ;n ray centred coordinates can be
source t0,,j to receiver ts,) can be written as a path integral described in terms of the canonical equations from the
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1Iarmitonian defined in equation (19J: =eia n 7bO& =C Cax re'y thz SMr.We wac

d._H pthe pa 2 M= T~cIa e 15OM of Comraous 0M)
q" = 31 = hVp behrd CM Pody and a baer CS:r of a Virk. is

ds 3p, E acded.

dqz 3H hVp2

Z7 = --- E .. 2s2 A rxYsnzhtfor

dp, 3H h,, V ,,h In) An aW-rcriv fmrm of cqu f t25) cm be used in wikh 2=  -. -=:; -? E  . -
ds 3ql 11 VF * sawwh trnsizion ca3 be =dc& betMCe 2 forM tha is

2Ceue a! lare cristncs q frca the cea l ma 2ad 2 form
dp 311 h V ,.h t.tre ns ci mrica-C, rcrgua at sna d2s, accs from the

=--= -~E - e

d, 3qz V V2E "  ccntxI ra zndfor m meta haiang. * weak in-
" omozencity. This a wnivi formT is dri'.'vd bydsab

where eq n () i term of q, ad the angular diff-ernce

E =VI 72p +PZ.13) between the central mr and the virinhiiy ra- Lezcs&5ne
I as the an ge difference between the tan;=l wTcrtOIS of

Usine the eikonal equation (211 in ray cenired acentral ray a a ty ray i, . -- a-d q.as
coMrdinates. the quantity E can be approximated as a ana difference b reyn the i4'nPI vc am 4 a

V central ray and of a iicinyit, ray in the i-Z. p.an in ray
E -- (24) centred coordinates (l. 2j. q, is thi diSlance from the

central ray to the iticinity rav along the 4,.

Substitutin, (24) into (23)gives Let us conside two sp-cified siniiv razs vhich are
located in the i-, plane. Because the t-e, and the 1-e.

= t'= p,. = thp.. planes are orthogonal to each other, az and pj are zero Mndz q1  . d - the former plane and q, and Pt arc zero in thde latter plzn.

dp 1 - _ vV (2 The sloppcss p, in the i-i, plane is described as
((26)d s h v V % s i n ,( 6

dLP - h vV . hz ".
dv hit V4

where
Equations (25) described in terms of q, and p, are

comparable to the dynamic ray tracing equatiors (11). but V=v(s. q2, O) and VK=v(s.O. q.).
no paraxial approximations have been made. Ierven! &
Pgcn~ik (1979) derived similar equations to equations (25) By substituting equation (26) into equations (25). dqlds can

from the cikonal equation. Cerven" (1987) has also briefly be rewritten as

descnbed the derivation of equations (25). showing how
thev become the standard DRT equations if paraxial - . -sin ,. (27)
approximations arc substituted for h and V. -s ,

Differentiating equation (26) with respect to s in the ray

3.2 Implementation of VRT and its relations to centred coordinates yields

kinematic ray tracing and DRT dp_ cosihdr7, hV,.sin 7,(

3.2.1 The standard form 2 ds (28)

Cerveny (1987) suggested that the system of equations (25)
would not be suitable for calculations because the right-hand where

sides of the equations for p, are the difference of two large, V., = Vjh, as.
nearly equal quantities. Note for the case of a vicinity ray
very close to the central ray and/or for the special case of a dij1 /ds and di72 ds can be obtained by equating equations
medium that has only very weak inhomogeneity the two (25) and (28). Equations (28) can then be rewritten in the
terms on the right-hand sides of equations (25) both following form in terms of q, and r7, in ray centred
approach a value equal to t,,/v2 In practice. we have coordinates:
found this not to be a problem for the test structure shown
in this paper as well as for most calculations involving dql h",v dq2 hiv -

Gaussian beams in media having spatial gradients. The -- -sin I,. in 7,,
extnt to which a numerical problem exists will depend on
the structure and ray geometry, -system (25) is used very dq1  hjV, V,
close to a central ray and the sl,..ial gradients are small. .-- C---tan cos (29
then a numerical problem can exist. If the system (25) is
used in media having strong gradients and at distances dU2 h.V2 , V
sufficiently far from the central ray. there will not be a ds V, cos 112

7
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where traveltime to an arbitrary receiver point can be estimated
from the values of q, and il, of vicinity rays near the

C =.V._.a. I receiver. Section 3.5 describes how geometric spreading can
-,Vt

2  V1 be calculated using VRT without a transformation between
v ray centred and ray coordinates by using the conservation

D - vlaw of energy flux along the wavefront. This section also
h2v2  V 2  describes superposition of Gaussian beams from using VRT.

If q is very small and/or heterogeneity is very weak. the
two terms in the expressions for C and D nearly equal one 3.2 4 Dynamic properties from kinematic ray tracing

another. In these situations, the first term in equations (29) It is worth noting that it is possible to estimate most of the
is much larger than the terms containing C and D. Thus, any quantities (29) from the kinematic ray tracing equations.
potential problem in numerical precision can be easily The VRT system essentially traces a ray in the ray centred
controlled by setting C and D to zero in equations (29) coordinate system of a reference ray. Thus. in some
whenever the two terms defining C and D equal one another situations it iiay be both simpler and more accurate to trace
to within three or more significant digits. Test calculations in a nearby ray by integrating the kinematic ray tracing
structures having spatial gradients with a spacing of 10 or equations with a perturbation in the take-off angles of the
more vicinity rays per medium scale length always gave a C reference ray. The quantities q, and q2 can be estimated
and D sufficiently large that no such check for loss of from the perpendicular distances between one reference ray
precision was necessary. and two nearby rays. Likewise the angles nh and r/2 can be

estimated from the difference in the local tangent of one
3.2.3 Dynamic properties from VRT reference ray and the local tangent of two nearby rays. The

loci of all three of these rays can be found by integrating the
From Fig. 3, it is seen that the curvature (K,) of the simple kinematic ray tracing equations rather than the
wavefront at the point (s, q,) in the i-i, plane is a function vicinity ray tracing equations given in equations (29).
of tan i, and q,: In a three dimensionally varying medium, the two nearby

tan n, rays will not generally lie along the directions of the vector
K, = (30) basis of a ray centred coordinate system (es, e2), even if the

q, R, initial conditions were carefully chosen to achieve this result

Because the radius of curvature of the wavefront is at the starting point of integration. Thus, some additional
described in terms of q, and ?1, in the VRT system, writing work would usually be necessary to convert these
the VRT system in terms of q, and I, describes the measurements into distances q, and angles %1 of rays lying
wavefront of the ray more directly thai. 'he standard VRT along the el and e2 directions.
system written in terms of q, and p,. Accurate tracking of the KMAH index, k, could only be

Given the expression equation (30) for the radius of accomplished by simultaneously integrating the kinematic
curvature of a wavefront as a function of q, and r,, the VRT rhy tracing equations for all three rays, in which the number
system can be used to estimate the traveltime to a point near of sign changes of the distances q, are accumulated during
a central ray, iteratively solve the two point ray tracing the time step of the integration. In this approach the
problem, and calculate geometric spreading. To determine computational effort is roughly the same as the procedure of
all of the relevant properties of the wavefield, one must integrating the kinematic system once and the vicinity ray
integrate both the kinematic ray tracing system and the tracing system twice, but the determination of quantities qj,
vicinity ray tracing system. Section 3.3 descnbes how n,, and k is indirect and more awkward. Gajewski &

PRentik (1987) have applied such an approach to determine
dynamic ray tracing quantities in anisotropic media.

In this application, implementation of either the standard
I, % dynamic ray tracing equations or the vicinity ray tracing

t it' equations would entail the evaluation of significantly more
-- complex algebraic expressions at each time step in the

w/i.,r,,,t' ,, integration.

3.25 Initial conditions

The vicinity rays are calculated by equations (29), while the
- central ray is calculated by the ray tracing equations in the

• "reference coordinates (e.g., Cartesian. spherical, and etc.).
. .. . .Like the ray tracing equations, equations (29) are initial

17, ', value problems in non-linear, first-order differential

Pigre 3. Ray centred coordinates (s, q,) and the wavefront equations, which can be solved by numerical methods such

coordinates (s, 4,): the Jacobian J between two coordinates is given as the Runge-Kutta method (e.g., Forsythe, Malcolm &
in equation (45) The curvature K, and the radius of the curvature Moler 1977).

of the wavefront R, in the -i, plane ate described q; is the normal Since most general sources can be constructed from a
distance between B and C. superposition of point-sources, it is most practical to specify

8
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the initial conditions of the VRT system for a point-source, spreading. The VRT system (29) is obtained without using
These are any paraxial approximations. Although DRT estimates all

rays paraxially close to a reference ray, its accuracy rapidly
q,l,..0 and r,.= .(31) deteriorates as the distances q, increase in inhomogeneous
where superscript I denotes the initial value of the medium. VRT. on the other hand, estimates only a single
parameter. ray in the vicinity of a reference ray. The accuracy of this

In a superposition of Gaussian beams, there are two estimated ray remains high even when the distances q
useful choices for the spacing of vicinity rays. Either the approach the scale length of the medium (see Section 3.4).
vicinity rays can be chosen to be mid-way between central In either traveltime estimation to a receiver near a reference
rays or they can be chosen to be coincident with central ray or seismogram synthesis by superposition of Gaussian
rays. In the mid-way choice, the vicinity rays provide a beams, it is usually possible to choose a spacing of vicinity
denser sample of the spatial variation in traveltime and rays giving a higher accuracy in estimated traveltimes than is
hence provide a more accurate estimate of the phase of each possible using paraxially estimated rays. When DRT is
complex beam. In the coincident choice, the position of the sufficiently accurate in a slowly varying meium, equations
estimated vicinity ray can be compared to position of the (33) can be used to convert between VRT and DRT.
exact. kinematically traced ray. thereby checking the Because the velocity of the vicinity rays are not expanded
accuracy of the vicinity ray tracing system as shown in at the point of the central ray (s, 0, (I) in the VRT, the VRT
Section 3.4. In both choices, the rlf are ind#:pendent of the system requires three velocities v, V, and V2 and their
Fresnel beamwidth described in Section 3.5. derivatives at points (s, 0, 0), (s, q1. 0) and (s, 0, q2). This

requirement may increase computing time compared to the
3.26 Relationship between VRT and DRT DRT system. which requ s only one velocity v and its

second spatial derivatives at point (s, 0, 0). The VRT
The VRT system can be converted into the DRT system by system, however, does not require the computation of
following the same procedures used in the derivation of the second spatial derivatives and avoids approximations in
DRT system ((erven 1985. 1987). The right-hand sides of calculating the velocities of the medium along the vicinity
equations (22) can be divided into linear terms and rays. Note that the equations for q, and r/2 depend on the
non-linear terms. The non-linear terms in equations (22) velocity of the medium along the vicinity ray, V or V2 rather
correspond to the omitted terms in DRT. The VRT system than on the velocity of the medium along the :entral ray,
in equations (22) is rewritten as follows by neglecting higher V(s, 0, 0) = v. For a velocity model specified in fixed
than the second-order terms in the i-i, plane for i, j = l,2, Cartesian (or spherical) coordinates, the velocity V, and its
and by assuming E hV/v,: derivatives V.,, can be calculated by transforming the

positions of the vicinity ray in ray centred coord...es
dq, dp, (dor pheical- = t~p,, =- L,1 q l "  (32) (0, q1, 0) and (0, 0, q2) to fixed Cartesian (or spherical)
lis Z7 V2 coordinates.

Equations (32) are similar to the paraxial ray tracing Because the VRT system calculates q, and i,, values by
equations (Oerven' & Pentik 1979: Uerveny 1987) except using V, and V,.q, it is not necessary to employ the method of
for the scale factor h,. VRT includes the scale factor h, matching paraxial phase (Iterveny & Hron 1980) to
because the vicinity (paraxial) ray is evaluated at (s, q,) in determine new initial conditions on q, and q, when vicinity
VRT. while this ray is evaluated at (s, 0. 0) in paraxial ray rays are transmitted through or reflected by discontinuities.
tracing and in DRT. Equations (32) can be converted into Since second spatial derivatives of velocity are not used in
the DRT system by transforming from ray centred to ray the VRT system, no jumps in q, or q, are induced by
coordinates ((Cerven 1985). The quantities Q,, and P, in the discontinuities in velocity gradient. At first-order discon-DRT are o v tained from q, and p, in the VRT for i and tinuities in velocity, new initial conditions on q, and t,, are/ = a. 2 by: computed by simply applying Snell's law to both the centralray and the vicinity ray.

'Q) (Cos U, -sin q, q cos q The differences between VRT and DRT can be
Q,, sin, Cos q,/' 0/ (q, sin q,). summarized as follows.

(P2) =(cos q, -sin P7 , p=(P, COS ?, (33) (1) Wavefront curvature, geometric spreading, traveltime
sin , cos %7,P 0 p, sin q,I to a point near a central ray, and an iterative solution to the

two-point ray tracing problem can be obtained using either
where 1j 1. 7, is the angular difference between the central the DRT or VRT systems.
and the vicinity ray in the i-i, plane. The number of (2) VRT. if desired, can be converted into DRT in
equation% in equations (33) is doubled compared to regions of a medium where
equations (32) because of off-diagonal terms. The physical
meaning of q, is the distance from the central ray to the P eq <<
vicinity ray measured along the ray centred coordinate q
direction e,. The variation of q, describes the change in
amplitude, and the variation of n7, describes the geometry of Likewise, DRT can be converted into VRT in more rapidly
the wavefront. These properties of q, and il, can be applied varying regions of a medium using equations (33) and
to problems such as two-point ray tracing, estimation of choosing an initial Y, to continue the integration using VRT.
traveltame near a central ray, and calculation of geometric (3) Since both VRT and DRT require ray centred
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coordinates, S-wave polarization is handled in VRT using distance to the central ray from point B, where 8 is the
the same procedure as in DRT (Cterveni 1987). intersection of the wavefront of the central ray and vicinity

(4) The geometric spreading of a wavefront it, VRT is ray (Fig. 3). The curvature (Ki) and the radius of curvature
determined from the conservation of energv flr .In DRT it of the wavefront (R,) of the principal axis. i , at point
is determined from an approximate solution of the transport (s, 0, 0) can be expressed as follows (Cervent 1981) by using
equation. equation (30):

(5) DRT requires specification of first and second spatial 1 q; q; q,
derivatives of the medium and jump conditions at R. = = - (37)
discontinuities ii velocity gradient. VRT requires specifica- K, Vp i sin %L tan qi

tion of only the first spatial gradient of the medium and does Let 41 denote the distance from S to B along the wavefront.
not require jump conditions at gradient discontinuities. 4, is the distance along the wavefront corresponding to q, in

(6) DRT can be used to estimate the trajectory and the ray centred coordinates. The wavefront coordinates
traveltime of all rays paraxially close to a reference ray. (s, 4q, 42) are uefined in Fig. 3. The relation between q, and
VRT can be used to estimate the trajectory and traveltime qi can be represented using R,:
of a single ray in the ray centred coordinate system of a
reference ray. This estimate is much more accurate than that R, .- • (38)
possible with DRT and remains accurate even as the tan ni ,
distances q, approach the scale length of the medium. Equation (38) determines the Jacobian J between the ray

centred coordinates and the wavefront coordinates:
3.3 Computation of traveltime near a central ray qq 2 = J (39)

The computation of the traveltime to a receiver near a
central ray is just as simple in the VRT system as in the where
standard method of DRT using the paraxial approximation.
Fig. 3 illustrates the calculation of the traveltime, J 171,2
r(s, n1, n2) at point N(s, n , n 2). The determination of s tan i'i tan 172
and n, for a specified point N in ray centred coordinates is Equation (38) shows that the curvature of a wavefront K, or
important in obtaining accurate estimates of traveltime and the radius of curvature of the wavefront R, can be written as
amplitude of the vicinity ray with respect to a central ray. a simple function of q, and ni. When the vicinity is located
The rough approximations contained in the standard on the i,-axis, Ar is simply obtained by substituting
paraxial technique may produce spurious oscillations in the equation (36) into (35):
superposition of Gaussian beams (e.g.. Madariaga 1984) and
break down if the central ray is far from the receiver. Here, An, 6VR -R,
we describe an alternative method for the determination of AtE,-W- , (40)
a specified point in ray centred coordinates. We begin by
writing the traveltime field, r(s, n1, n,) of the specified where
point N (e.g., receiver), in the ray centred coordinates as e, = I for q, x ., >0: convex wavefront,

r(s, n,, n2) = r(s) + Ar. (34) e, 0 for q, x% = 0: planar wavefront,

Ar is the traveltime difference direction between the points e, = -1 for q, X q, < 0: concave wavefront.
S and N (Fig. 3). The traveltime difference Ar(s, n,, n2)
between S and N, is obtained from To facilitate comparison with standard DRT in 2-D,

equation (40) can be expanded as follows for nIR << 1:An 2

( Ar ( - lA 2 w ' (41)

where An is the distance from N to a point D on the
wavefront measured along a normal to the wavefront, and V The traveltime of the vicinity ray r(s, n) is approximated as
is the velocity of the vicinity ray at point (s, n1, n2). f ±1 follows by zubstituting equation (41) into (34):
or 0 depending on the shape of the wavefront along the n"

direction whose projected line passes the points (s, 0, 0) and r(s, n) - r(s) + ie -. (42)
(s, ni, n,) in the 1-4, plane. Let us assume that the radius

R, (or curvature K,) of the wavefront along the ;,-axis does Equation (42) is similar to that in DRT. The factor l/VR in
not change in the neighbourhood of the point S(s, 0, 0). equation (41) corresponds to M (equation 9) in the
When the point is located along the axis, i or 4, the expression for standard DRT:
distance An, is simply approximated as shown in Fig. 3, and
is given by I sin 17 = p M + M An sin q. (43)

VR Vq' q' q-Ansin/
The last term of the right-hand side in equation (43) is

The radius R, at the point (s, n1, 0) or (s, 0. n-2) is given by neglected in the paraxial approximations of DRT. q' is the
equation (24). The error in equation (36) depends on the normal distance between C and D in Fig. 3. As shown in
variation of R, along the i,-axis. Let q, denote the normal Table 3 in Section 3.4, equation (40) gives more accurate
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computational results than the paraxial approximation in expanded with respect to r(so) by using a Taylor expansion
DRT does. When the vicinity ray is located at the general about s,. Terms higher than second order are negligible and
point. N(s. nI, n2) in the ,-i, plane. Ar can be obtained will be neglected
by calculating the radius of curvature of the wavefront. R. at a'''
the point N(s. nt, n,) along the new principal axis i. The T(s) r(s.) + l, (s "-s)
angle p is an angular difference between the el and i axes in O so
the i,-IP, plane (Fig. 4). By using the new principal axis I. 1 02r(s) S

the point N(s, n1, n2) in 3-D can be described as N(s, n) in +2 I( -So)+ - 
. (47)

2-D. The distance. n. between the points S and N in the
i,-, plane is given as It is easy to see that

n = n, cos # + n, sin p, (44) ar(s) and 02 (s) u.1&) (S)

where Os I .... v(s- ) Os s v 2(sO)8

Combining the expressions (34), (46), (47) and (48), the
P=tan 1 traveltime r(s, n,) is approximated by

1 1 v3 sS)
The radius of curvature of the wavefront, R, at point N(s, 0) r(s, hi) = r(s.) + I (s -s) (s -so)2 +Ar. (49)
in the i-i plane is obtained by using E k r's theorem V(so) 274 0
(terven) & Ravindra 1971): r(s, ni) indicates the traveltime of a specified point N, such

I I I as a receiver point, in ray centred coordinates. Note that
R cos p + sin-/. (45) although a Taylor expansion has been used, it is a Taylor

R Iexpansion along the direction of the central ray rather than
Finally. Ar at the point N(s, n1 ,n,)=N(s,n) can be along a direction perpendicular to the central ray. The
calculated by using equations (43). (44) and (45) in the i-i standard Gaussian beam and paraxial ray methods make a
plane. Taylor expansion of traveltime in the direction perpendicu-

lar to the central ray as well. In equation (49) it is usually
Ar ' . where c = R (46) possible to select so close to s, minimizing the errors in

V IRI making a Taylor expansion along the central ray.
Two important modifications from standard DRT will

r(s, n,) in equation (34) can be described in terms of known Tw imotnmdfcaosfrm tnadDIT il
poin s , on g hecentralray.Ilequationy (34) can be dcrbemake the estimated traveltime more accurate in VRT. First,point s = s,. along the central ray. The quantity r(s) can be thrailineuio(4)sntexnd.Scnte

the radical in equation (46) is not expanded. Second, the
wavefront curvature is calculated at the vicinity ray rather

than the central ray. By judicious choice of the spacing of
central rays and associated vicinity rays, it is possible to
more accurately describe the true shape of the wavefront.
The improved accuracy possible with the VRT system has
been demonstrated in several tests.

Estimation of the traveltime for a vicinity ray becomes
less accurate as the distance q is increased. The error, for a

,Ispecified point (e.g., receiver), can be reduced by estimating
the traveltime from the closest ray to the receiver, normal to

.. . the wavefront passing through the receiver. In the case of
multipathing, several wavefronts may pass through a
receiver. Each wavefront is classified by its KMAH index
(see Section 3.5) and the signs of q, and qh of the rays
belonging to the wavefront. A traveltime is then estimated

t for each wavefront passing through the receiver.

/ 3.4 The accuracy of the VRT and DRT system

//', The accuracy of the DRT and VRT systems was tested in
computations using the structure shown in Fig. 5. In this
model, the velocity gradient is discontinuous at z,1 = - 10 km
but velocity itself remains continuous. Because of a

). vdiscontinuity in the curvature of wavefront at Zd, the scale
factor h in ray centred coordinates is also discontinuous at

Fiure 4. New principal axis i and the 14 plane: The new principal z,. The scale factor h at a point (x1 , z) is calculated as
i axis is constructed by rotating the i,.axis through the angle P follows when the central ray is below/above zd, and its
which is described in terms of nt and n, The point N(s, nt, n2) in vicinity ray is above/below z,1:
"t.D can be descnbed as N(s, n) in 2-D by constructing the 14
plane. The distance n in the !-; plane is obtained by using equation h = I + W, L9 + W2 12

(51). ii V V
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Velocity (see) v is the velocity of the central ray at the point S, and V is
2. 4. 0. 8. 10. the velocity of its vicinity ray.

The quantities of vicinity rays, q and p, and estimates of
traveltime were calculated using equations (29) and (40) as a
test of the VRT system, and using equation (30) and (2) as a
test of the DRT system. In DRT, the phase matching
method (terveng 1981) is applied at the discontinuity in
velocity gradient, Zd = -10 kin, while it is not required in

1o...... .. the VRT. Figs 6 and 7 show the central ray Q0 , and its true
vicinity rays, Qi for the initial angular difference ° = i,
where i = 1, 2, 3. 10 = i means that the vicinity ray's take-off
angle is i degrees away with respect to a particular central
ray. Therefore, if there are no errors in VRT and in DRT,
the vicinity ray path must be that of the prior (or
subsequent) central ray. In Figs 6 and 7, solid lines indicate

-20. the central ray path and its true vicinity ray paths, while
dotted lines represent its estimated vicinity ray paths from
VRT, Qv, and from DRT, QIP. The true vicinity ray paths
are calculated from kinematic ray tracing, by using a
take-off angle cr, + i, where or, is the take-off angle of the
central ray at the source. Therefore, the difference between
Q , solid line, and Qfy (or UP), dotted line, represents

-30,1 errors in VRT (or in DIRT). As shown in Figs 6 and 7, the
errors of q and p in VRT are considerably smaller than
those in DRT. Tables 1 and 2 give more detailed
information, comparing true values of q and p with the

Ftue S. A laterally homogeneous acoustic model with density estimated values from the VRT and DRT. The symbol A
constant in depth: the gradient of the velocity has a discontinuity at denotes the difference between the true value and its
z = 10 km. The velocity of the medium is given by v(z)= estimated value.
2.5+0.1 Xlzl for z -- 10km, and v(z) 3.5+O.4x(Izl- 10) for As shown in Tables 1 and 2, the accuracy of VRT is
zs-10km. greater than that of DRT. This is because VRT does not
where make any paraxial approximations and, hence should

remain accurate for much greate distances q, from the
z,- 14', zi - Z,,I central ray. The errors caused by approximation of the scale

-!2 - z I z2 - z I' factor h in VRT, however, are inescapable. Errors will grow
in VRT as q, increases but at a much slower rate than in

Z2  q - q sin ot. sin o' -9q DRT. The trajectory and traveltime of vicinity rays can be
Oz determined exactly by kinematic ray tracing with geometric

,_ S 021 S1

/ 1 .

-~ X.

/ / 1
"- . /

igpre 6. True vicinity ray paths and their estimated ray paths from the VRT: the true vicinity ray paths (solid lines) for 10 = 1, i = 1, 2 and 3
degrees (QJ) and the estimated vicinity ray paths (dotted lines) (£~') are plotted to test the accuracy of q and p in the VRT system. The
differences between the solid lines and the dotted lines represent the errors in the VRT
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Flure 7. True vicinity ray paths and thcir estimated ray paths from the DRT: the true vicinity ray paths (solid lines) for ii' 1 , 2 and 3
degrees (9,) and the estimated vicinity ray paths (dotted lines) (91)) are plotted to test the accuracy of q and p in the DRT system. The
differences between the solid lines and the dotted lines represent the errors in the DRT.

Toble 1. Estimated values, q v and p v. from the VRT. spreading, wavefront curvature, and KMAH indices
110 True p True q pv V V qV AqV calculated as described by Gajewski & M~en&i (1987). In

10 -3 99SE-3 16 6M2 -3.392E.3 -.. ) K3E-3 16.5673 0.1147 thsprocedure, the trajectory of vicinity rays is error free,
r -8.581E-3 29.0914 -6.635E.3 -- 1,946E-3 283819 0.60"9 but since the spreading and curvature are calculated from

31 -1 418E-2 38.6256 -1, 032E-2 -3 860E-3 36.7859 0.8397 differencing closely spaced rays, they potentially have
greater error than those obtained from the numerically more
stable VRT procedure.

Table 2. Estimated values. q1" and p", from the DRT. Table 3 !hows the traveltime estimation of the vicinity ray
q' True p True q p0

1 p) q q1 from VRT and from DRT, with respect to the traveltime of
1* -3 995E-3 16.6820 -2.362E-2 I963E-2 182923 - 1.6103 the central ray. As shown in Fig. 8, the true traveltimes of
2" -8.571E.3 29.0914 -4 723E-2 3 8t65C.2 3X.5790 -7 4876 the vicinity rays are obtained from kinematic ray tracing. To
3' -1 418E-2 38.6256 -7 082E225 564E.2 54.8545 -16.2289 avold errors genetated along the central ray path, the

R1, R2  fl1

Q S2
I

r fill

FRgan S. Traveltime estimation from the VRT and from the DRT: the true traveltimes of the vicinity rays are obtained from the kinematic ray
tracing. The traveltimes of the vicinity rays at R1, R2 and R, are estimated at the point S1, S2 and S, on the central ray to avoid errors
generated along the central ray path. The true q and p are used in the traveltime estimation for both the VRT -ind the DRT.
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Table 3. Travelime estimation from the VRT and the DRT source-time function can be constructed by choosing y(t) to

P" t'ruc r listimaicd r' AT" LEstsmacd T" A" be a generalized delta function and convolving that function

1^ 19 1025 19 11701 OA24 196.82 00343 with a particular source time function. Some possible forms
2' 1Ht4196 18 4027 00169 182832 0 1364 for y(t) are for f(t) equal to:
1" 17840, 177886 n 0594 175267 03213

(1) a delta function (Chapman 1978; Chapman &

traveltimes of vicinity rays at R, R, and R, are estimated at Drummond 1982):
points S. S2 and S, on the central ray path. The true values I
of q and p are used in the traveltime estimation of vicinity y(t) = b(t) - i-- (54)
rays. The traveltime estimation of the vicinity ray from VRT It

is calculated by using equation (29), and that from DRT is (2) a Gaussian wavelet (terven 1983):
calculated by using equation (2). As shown in Table 3, the
estimated traveltimes from VRT are more accurate than y (t) 0.-7-- e -,Z (55)
those from DRT. When the estimated q and p are used in Vjy
the traveltime estimation, the estimated traveltime errors in where y controls the width of a Gaussian envelope with
DRT greatly increase compared to those estimated from respect to the prevailing angular frequency w; and
VRT due to larger errors in q and p in DRT. (3) a resonance function (Madariaga & Papadimitriou

1985):
3.5 The synthesis of seismograms by superposition of
Gausian beams y(t) I [ I t" + iA , (56)

The zeroth-order high-frequency asymptotic solution to the

wave equation in generalized coordinates is given in where At is the sampling interval for the discrete time series
equation (12). Let us consider a point S, located close to the y(t.
central ray, specified by the ray centred coordinates,
(s, n , 112), that is, S =(s, ni, n2). The zeroth-order The Gaussian wavelet equation (55) is useful for simulating

asymptotic solution to the reduced wave equation in the ray a narrow-band source, while equation (56) is useful for

centred coordinates can be expressed in the form simulating broad-band responses. Equations (54), (55), (56)
can be constructed to be a generalized delta function by

g(S, (o) = A(S)e....(s)(-i) sgn (o). (50) requiring

The amplitude function A is complex and can be determined g*

by applying the conservation of energy flux and a J t y(t) dt= 1. (57)

normalization condition (Beisei 1969, p. 156; Gasiorowicz
1974, p. 45). r is the traveltime of the central ray. k is the
value of the KMAH index whose value is increased by one 3.5.2 Beam widths and the beam Fresnel volume
whenever the sign of q, changes along the ray. The KMAH
index represents the ir/2 phase shift whenever the ray In beam methods, every ray can contribute to the wavefie!d
touches a x-caustic (q, =0 or q2 = 0) (Chapman & at the receiver, but the contributions are dependent on the

Drummond 1982). particular beamwidths. An important problem in the
superposition of beams is the determination of the
beamwidths. The Fresnel volume is one possible form of a

3.5.1 Source-time functions physical beamwidth, because the principal contribution to

For a source-time function f(t) specified as the real part of the amplitude and the phase at the receiver is contained in
ananalytic function v(t), the wavehield is given by the tays within the beam Fresnel ',olume. Fresnel diffraction

evaluating a convolution: and the Fresnel volume are defined in optics (Jenkins &
White 1937; Stone 1963) and in geophysics (Kravtsov &

ui(S, t) .i - (g(S, t) * y(t)j Orlov 1980, ('erven 1987) to explain diffraction. An

g, e approximate Fresnel volume can be defined in the beam
f " ' dw ./" (51) method, which we refer to as the 'beam Fresnel volume'. A

vicinity ray contained on the surface of the beam Fresnel

and substituting equation (50) for g(S, (o) gives volume is half-period ahead (or behind) in traveltime to that
of the central ray. For a given frequency, the cross-sectionAU.:) f A

u(S, T) - . (-1)4 sgn (t)y(w)e "' " ' dw of the beam Fresnel volume perpendicular to the central ray
t f at a point s can be estimated from all vicinity rays at s a

half-period ahead or behind the traveltime of the central
(S.. y(t -)(-i). (52) ray. The beam Fresnel volume is not the same as the Fresnel

volume defined by Kravtsov & Orlov (1980). but its
vlt) is the analytic time series represented by cross-section closely approximates the cross-section of the

(t) -~(t) - h(I), (53) exact Fresnel volume along most of the ray path of the
minimum time ray.

where 1) and h(t) are a I lilbert transform pair (Bracewell The tiaveltime difference between the central ray and a
1978) The analytic function corresponding to any realistic vicinity ray on the surface of the beam Fresnel volume in the
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i-j, plane is given as amplitude function i viewed as a generalized delta function.
C can be chosen from a normalization condition in space

Art= ~r~, 1,0) - r(s, 0.0)= v, (5) and time including the reflection and the trAnsmission

Ar = r(s, 0. '2) - r(s, 0, 0) = 7, coefficients. This will guarantee that A(S) will satisfy the

where y is the half-period. Equation (58) statesthat a po transport equation and that equation (52) will satisfy the
onwheurface of the - e. vluion (s80) oestht a o) high-frequency equation of motion,
on the surface of the Fresnel volume (s, F , 0) or (S, 0, F) Generally, F, is chosen to be equal to the half-width of the
has a half-period time difference with respect to the point beam Fresnel volume as defined in equations (59). A
(s. 0, 0) on the central ray. Formulae for the beamwidths F modification, however, is necessary near y caustics (Fig. 9),
along the i, axes are obtained by substituting equation (40) where x and y caustics are as defined in Chapman &
into (58). Drummond (1982). Note that the formulae (59) are regular

q, at x caustics, where q, and/or q2 vanish. At y caustics,
F, = Vy "V= V+'rV; + 2yVR 1, where q, and/or q2 vanish, the formulae (59) go to infinity.

tan (9) The y caustics correspond to plane waves. Since some

2 q2  = VyV + 2yVR Gaussian windowing is always desirable to exclude
F2 y= V + 2 YV2 t 2 , 2 1 contributions from vicinity rays having errors at large" mtn i72  "

distances q,, we take the beamwidth in the vicinity of a y
At a fixed point q, and q/, may vary according to the initial caustic to be equal to the mean Fresnel beamwidth in
conditions chosen for vicinity ray tracing. The ratio regions adjacent to the y caustic. This modification near y
q,/tan it,, however, is nearly independent of the initial caustics does not violate energy conservation and the
conditions. The definitions (59) ensure that the beam widths normalization condition.
are always equal to the width of the approximate
cross-section of the Fresnel zone for a particular frequency, 3.5.3 Energy conservation and normalization of beams
independent of the initial conditions chosen for vicinity ray
tracing. For high frequency (small y). the beamwidth iven Using equations (52) and (60) the complex displacement u
by (59) is approximately proportional to -vyR7 VR, V,/ of a beam specified at a point N in the ray centred
Equation (59) is the same as the classical definition of coordinates is
Fresnel's half-period zones (e.g., Jenkins & White 1937). 2 -

Using Fresnel beamwidths, the amplitude function A at a u(S, t) = C exp (6-1 -
' )\ F)/, (

specified point N will be described as a generalized Gaussian [ -FG9 F2 /
function of the form where the amplitude factor C is obtained by using the law of

A )C (i ) n2" 60] conservation of energy flux and a normalization condition.
A(S) = exp - , - _, ) (6) This approach for determining C differs from the approach

followed in the standard Gaussian beam technique, where C

where the beamwidth F, is the half-width of the beam is obtained by evaluating the superposition integral by
Fresnel volume. With this amplitude distribution, energy stationary phase and requiring the result to reproduce ray
along the beam Fresnel volume of half-width F, is theory in regions where it is valid. In contrast to the
proportional to l/e2 and its amplitude is proportional to l/e standard Gaussian beam method, beams are interpreted as
with respect to the central ray. If the expression for the the probability of finding a ray at a given point and time.

This probability distribution is assumed to be a Gaussian
distribution whose unit area is always I with respect to n,
and 1. This constraint guarantees that the energy of a beam
(ray tube) is conserved with respect to space and time.
Conservation of energy flux in the VRT system is identical
to the requirement that the determinant of the propagator
matrix in the DRT system is constant along the ray
(Liouville's theorem) (Iterven & Pentik 1983; Kim 1986;
Klimef 1988). The wave function u(S, t) then describes the

\ - : probability of finding a ray with a statistical state, which is
characterized by u. Because the total ,nergy in a beam is
conserved along the wavefront, it is necessary to transform
from the ray centred coordinates to the wavefront
coordinates. The Jacobian between the ray centred and the
wavefront coordinates is given in equation (39). The
conservation law of energy flux and the normalization
condition impiy that the probability (P) of finding a ray

Figere 9. The vicinity ray and the beam Fresnel volume: the within a given space is
distance q, between the central and the vicinity ray is generally
smaller than the beamwidth F, from the central ray to the beam P(S, t = (u I U)'.oo
Fresnel volume. The parameler Y1, . 0 at point A, and q, =0 atr, =
point B, which correspond to the v and x caustics (Chapman & I I dql dq2Ju(S, t)u*(S. t)= 'I

Drummond 1982)j- .J-
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where the symbol ' denotes the complex conjugate and J is 3..4 Superpositon of beamn
the Jacobian between the ray centred and the wavefront
coordinates (equation 39) The probability of finding a ray is For the wavefield obtained by superposition of all beams we
a similar concept to the density of rays. If the integration shall use upper-case U, instead of lower-case u, which is
limits in equation (62) are taken over a fixed volume of reserved for an individual beam. Note that the wavefield u
space, then a focusing region would give a large P value, corresponding to an individual beam is a function of vertical
while a defocusing region would give a small P value. The take-off angle and azimuth (b and o), which specify the
constant C in equation (62) is determined by solving central ray under consideration. Thus we shall write
equation (62) and by considering the normalization factor D u(S, t, 6, 0) instead of u(S. t). The wavefield U(S, t) will be
for a radiation pattern at the source and 40 for a product of described by superposition of individual beams (rays) with
rctlection and transmission coefficients. The integral of respect to 6 and 0:
equation (62) y ields 0

F I U(s, t); u(S. t,6, 4,) d6 do'. (66)P'(S, t) = C, - = f@.6)" , foo
When the integrand of equation (66) is sufficiently smooth

The constant D depends on the take-off angle 6 and azimuth for a given S and ,. it can be discretized as
0 (Aki & Richards 1980. p. 82: Klime§ 1984). Reflection N At
and transmiss:on coefficicnts are introduced by many U(S, t) = 2 u(S.t, 6,, iPk)A 6,A,, (67)
authors (Aki & Richards 1980; erven 1985. etc.). The ,-ok-O
product * is generally a complex vilue. and is given as where the quantities A6, and AbA are determined from a

Nv given range of take-off angles 6, and Ok (Iterven 1983).
S= r, L,, The wavefield is calculated in (66) or (67) by summing up

each ray's contnbution at a specified point, its wavelet
where L, is a reflection/transmission coefficient at an ith having a Gaussian distribution both in space and time. As in
interface. The constant C is then ohtained as the Gaussian beam method (_erveng 1983). this method

V2,)@ -Zalso does not require two-point ray tracing to compute the
C = -seismic wavefield.

Since the energy of a beam is conserved along the
V ' TrF represents the geometrical spreading of the wavefront, U(s, t) in equation (66) can be rewritten in the
wavefront. A(S) can be rewritten as follows by substituting wavefront coordinates by using the Jacobians in equation
the ex pres: ion for C into cquation (60): (39)

'7-zFF~ em P 2  (64) U(S, 1) f5~ exp[ 2-( ]
The calcuiaton of the traveltime r(s, nJ in (50) is given in x Ar J4Iy(T)(-t)kJ d6 do, (68)
equations (49). The final wavetield of a ray at a specified
point is then obtained as where 7 = r - r. As a shown in equation (39). the Jacob;ans

V2D i and . between the ray centred and the wavefront
) -D coordinates give

urb , T) .(,n, = ,, ,, = R,a,, (69)

x --xp - 2  &)], 1.,(_i)4v(t - r)]. (65) where a,, is the angular difference between the central ray
• and the vicinity ray which passes through at point (s. n,) in

the i-s. plhne (Fig. 3).
The forrn of equation (05) can be shown to be quite similar

to the expression for a Ntandard Gaussian beam when
paraxial approxirmations are substituted for the phase and 3,5.5 Superporttton tn a homogeneous medium
the expre.sion of the half-width of the paraxial volume is It is easy to demonstrate that the superposition integral
sibs:itied for h, The al)proach and concepts used it returns simple ray theory ii a homogeneous medium. In a
deiiving the vicimty ray tracing system, h(,wever. are quite homogeneous medium. U(S, t) is represented simply
different from those used in the standard Gaussian beam because R, = R, =S. and S is the total distance from the
,ethod. The number of equations required in this method is source to the receiver. The parameters in a homogeneous
nine, by contrast to 21 in the standard Gaussian beam medium are given as
melhod. This method uses exact positions of vicinity rays
while tht standard Gaussian beam method uses estimated R = S, R , S. '1 = 1.
values based on a Taylor expanston about the central ray. a = r,+ , = , + 6. (70J)
Bearwndth in thi, method is the distance from the central
ra; to, thv bean Fresnel volume and is fully determined by and
equation (W9), while beamwidth in the standard Gaussian do:= d. dfi = do, (71)
beam mrethrd is usually chosen arbitrarily and not given any
physical nrie'nin, where c, and c, are constant Substituting equations (69),

16



Vicinity ray tracing

(70). (71) into (68). then gives

V2D fRa-
U(S.t)0=, exp ,/,F! _-R N

Vx'JF. f ~ JJn F, IJ, F,J 1
x j?,y(T)(-i)"j dad# -,

=s-- ly~r)-i)*l,(72) •

where J=JJ2 and k=O in a homogeneous medium.
Equation (72) shows that the displacement of U(S., ) in a
homogeneous medium is proportional to I/S, the distance .
between source and receiver. This demonstrates that the ",-
superposition is a high-frequency solution of the wave
equation. Note that the superposition is independent of the
choices made for the initial conditions for the spacing of
vicinity rays. -21

3.6 A numerical example superposing Gaussian beams 9 -

determined fre-. VRT -

A numerical exampl, was chosen to test the superposition of
Gaussian beams defit."d from the VRT system. The velocity
model (Fig. 5) used in ,he test is the same as that used in the

tests of the accuracy of the VRT and DRT systems. P
velocity is continuous iH this model, and a discontinuity in P
velocity gradient exist, at 10 km depth. The model was not 8 25 30 .5 .0 .i15 50 ,r. ft)

designed to be geophysically realistic, but rather to illustrate Distance (kin)

the theoretical phenomena near a caustic. Fig. 10 shows the Figure ii. The vertical component Gaussian beam scismograms
results of ray tracing, indicating a triplication in the range using VRT an Fresnel beamwidths for the model: the centre
32.4-48.3 km from the source. Two caustics are located at frequency of a narrow-band Gaussian source wavelet is 5 lIz. and
x - 32.4 and 46.3 km. Fig. 11 shows the vertical component the receivers are located at the surface (z = 0 km).
synthetic seismograms computed by superposing Gaussian
beams defined from vicinity rays, called 'VRT seismograms'. Figs 6 and 7. To improve the traveltime estimation, the
To calculate these seismograms, 64 rays are used with choice n' = A6/2 is recommended.) A Gaussian source
Ab = V successive increments in take-off angle. An (equation 55) pulse with centre frequency 5 Hz is used. The
explosive point-source is assumed, and the initial conditions beamwidths are taken to be the Fresnel beamwidths (59).
are q' = 10 and q, = 0. (Here, the choice tj,' = Ah is made to WKBJ synthetic seismograms are computed for comparison
check the accuracy of the VRT computations as shown in with the VRT seismograms (Fig. 12). As shown in Figs II

-t

-"-

.\. ..2..' --  -- -

0.00 8,23 116. 16 24.69 32.93 4,1.1 ",9. 39 57, 62 6 .5.85 7 i
Distance (Kin)

Figure 10. Ray trajectones in the model shown in Fig. 5: the triplication zone is located in the range x = 32.4-48.3 km.
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N' 4 CONCLUSIONS

The VRT system traces the position of a ray in the ray
- centred coordinate system of a reference ray. Although the

DRT system can be used to estimate the position and
traveltime of all rays in the paraxial vicinity of the reference

- ray, it breaks down rapidly as the perpendicular distance q
to the vicinity ray increases. The VRT system exhibits a
much slower breakdown as the distance to the vicinity ray

- . '" . increases and closely reproduces the ray trajectory obtained
from kinematic ray tracing even at large values of q.
Quantities obtained from integrating the VRT system can be
used to determine geometric spreading, wavefront curva-
ture, and KMAH index with greater numerical precision

".- than is possible by differencing kinematically traced rays.
The VRT system does not require transformation from

- ray ceh1red to ray coordinates. A reduction in the number
of required coordinate systems in VRT leads to a fewer
number of equations needed to specify quantities related to
the wavefront. The VRT system is specified by only four
equations in addition to the kinematic ray tracing equations.
By contrast, the standard dynamic ray tracing equations
based on paraxial approximations require eight equations.
Unlike the standard DRT system, the VRT system does not
require the evaluation of second spatial derivatives of
velocity along a ray. The VRT equations will thus also have

.advantages over standard DRT in simplifying the para-

25 3.0) 35 40 45 s0 s 60 metrization of the medium. Since only first spatial
Distance (kin) derivatives of velocity are used in the VRT system, no phase

S12. Ihe vertical component WKBJ seismograms for the matching is required at discontinuities in velocity gradient.IFl 12.T hvetclcpoetKBsesorsfrth At velocity discontinuities, new initial conditions orn the
model for 5 Hz: the conditions are the same as in the VRT

seismograms in Fig. 11 except that the WKBJ seismograms were vicinity rays are determined by applying Snell's law to the

first synthesized for a delta source-time function and then convolved central ray and the vicinity rays separately.

with a narrow-band Gaussian wavelet. The quantities obtained from VRT may be easily
converted to those obtained from DRT and vice versa. Since
VRT provides a much more accurate prediction for the

trajectory of a ray in the vicinity of a reference ray, the
and 12, the two methods closely agree with one another, relations between VRT and DRT can be used to estimate
Amplitude differences between the two methods are less the 'paraxial vicinity' in which errors associated with the
than 5 per cent. Diffractions are shown near the caustics in paraxial approximations of DRT are small.
both methods. The diffraction near the caustic at In either DRT or VRT a physical definition of beamwidth
x 32.4km decays faster than that near the caustic at may be obtained from the concept of a beam Fresnel
x -46.4 km because the beamwidth (beam Fresnel volume) volume. An example calculation demonstrates that this
varies more slowly at the former than at the latter caustic, definition of beamwidth can approximate diffraction effects.
Some differences in the frequency content of the diffraction
from the caustic at x-32.4km can be seen. These ACKNOWLEDGMENTS
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ABSTRACT

Vicinity ray tracing (Section I) is used to determine the focusing/defocusing and multipathing in-

duced by the Aleutian slab on the P waves radiated by Aleutian nuclear tests. The geographic

pattern of amplitude anomalies predicted from slab models proposed from modeling of P travel

time anomalies is consistent with the observed geographic distribution of mb anomalies from the

Aleutian tests and the results of studies of P waveforms observed from shallow focus earthquakes

occuring within the Aleutian island ridge. A broad zone of reduced P amplitudes is predicted at

northerly azimuths at distances greater than 700. This shadow zone is also likely to be associated

with pulse broadening of long period and broadband waveforms. A network average of mb for

shallow focus events on Amchitka Island is predicted to underestimate the true size of the event by

as much as 0.4 mb units if all stations in the network average are located within the shadow zone of

the slab. For the most probable distribution of stations used in mb estimates of the Aleutian tests,

this bias is reduced to a negative bias of 0.1 mb units. Due to the large areal overlap of European

and Canadian stations with the slab shadow zone, weighting of stations by focal sphere solid angle

in a network average cannot reduce this negative bias much below 0.07 rnb units. The documented
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existence of a similar defocusing anomaly beneath a portion of NTS, however, may eliminate the

need of making a corrcction for relative focusing and defocusing when comparing mb's of Aleutian

tests with those of NTS tests.

INTRODUCTION

The object of this study is to determine the yield bias of hnderground nuclear tests induced by

the presence of a high velocity descending slab beneath the test site. Specifically, investigation is

made of the effect of the Aleutian slab on the measured mb of the underground tests Longshot, Milro,

and Cannikan P wave seismograms are synthesized using dynamic ray tracing and superposition

of Gaussian beams in three-dimensional models of the Aleutian slab determined from P travel

time delays. Focusing and defocusing and multipathing at teleseismic distances are evaluated by

comparison of observed with synthetic seismograms of the Aleutian tests.

COMPUTATIONAL METHODS AND SLAB MODELS

Theoretical amplitudes and travel times were computed using vicinity ray tracing (Section I)

in the long slab model of Boyd and Creager Creager (1991) for the Aleutian slab using source

positions corresponding to underground nuclear tests in the island ridge adjacent to the slab. In

constructing the model shown in figure 1, the raw thermal model was obtained from Creager (per-

sonal communication) and converted to a P velocity model by assuming the temperature derivative

of P velocity used by Boyd And Creager, dVp/dT = 0.5ms- 1K - 1 . Details of the amplitude calcu-

lation are describ2d in Scientific Report No. 2 of this project, which also discusses the results of
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experiments fore several different types of slab models and variations of source position relative to

the slab.

RESULTS

Figure 2 shows P and PcP rays predicted for Amchitka tests in the Boyd and Creager model.

The rays are shown for a 2-D cross section, perpendicular to the strike of the -- tb. Multipathing

can be observed at the great circle distances 420 to 530 for P waves and around 120 for PcP waves.

Amplitude and travel times were calculated in models with and without the slab using PREM

as a reference model. P amplitude anomalies are shown in figure 3, contoured in mb residuals.

A geographic plotting convention is used rather than a focal sphere plot. The epicenter is at the

center of the sphere, the inner circle corresponds to the area at distances less than or equal to 350,

the outer circle corresponds to core grazing distances.

Highest amplitudes are predicted to occur around an annular region at 420 to 53' . Low ampli-

tudes are predicted to occur at longer distances outside this ring, nearly everywhere oil the dipping

side of the slab. Peak mb residuals in the observed data (figure 4) are bounded by 0.6 mb units. The

rnb anomalies in the predictions (figure 3) are uniformly positive (amplitudes are focused relative

to those observed in a reference model). If a baseline of 0.35 tnb is subtracted from the predictions

shown in Figure 3, then the strength of the predicted anomaly pattern .s smaller than the anomaly

pattern shown in the data by nearly a factor of 2.

The predicted variation of up to 0.35 in logiOA, however, does agree with the predictions of

Sleep (1973), who predicted a factor of 2.5 variation in teleseismic P amplitudes of shallow focus

events in the Aleutian ridge. Sleep corrected for receiver effects by dividing measured amplitudes
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of Aleutian ridge events by amplitudes recorded by the same stations for nearby events that are

largely unaffected by slab focusing and defocusing. The higher intensity of mb variations shown in

Figure 4, consistent with nearly a factor of 10 in amplitude, likely contains a significant component

of variation due to the effects of receiver structure and regional variation of attenuation. The much

closer agreement with amplitude anomalies corrected for these effects suggests that most raw mb

data will have large effects due to both receiver structure and regional variations in path attenuation

as well near source focusing and defocusing. The unmodelled receiver and path effects present in

the mb data shown in figure 4 are not large enough to obscure a slab shadow zone visible in the

concentration of negative mb anomalies at northerly azimuths.

The results shown here for a long slab model are essentially the same as those discussed in the

studies of Sleep (1973) and Davies and Julian (1972) for slab models extending to shallower depths.

Predicted mb anomalies for Aleutian ridge events are thus not sensitive to details of slab structure

below 650 km depth.

If stations used in a network averaged mb lie entirely within the slab shadow zone, the estimated

mb would be up to 0.4 mb units smaller than that estimated if the slab structure were not present.

This bias drops to a -0.1 mb if the network shown in figure 4 is used to construct Mb. The

values plotted in figure 4 are taken from studies by McLaughlin et al. (1990), in which clipped

and poor signal to noise waveforms used in a maximum liklihood estimate are removed. The

regional concentrations of stations is representative of the most probable network used in a network

average of Aleutian events, large gaps in coverage corresponding to oceans and poorly instrumented

continents. Weighting of stations by focal angle cannot reduce the intensity of the magnitude bias
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much below 0.1 mb units because much of this network overlaps a large areal extent of the slab

shadow zone.

Calculations of body wave amplitudes and travel times were also made using earthquake sources

in the Aleutian slab and slabs in other regions (Scientific Report No. 2 of this project). For earth-

quakes located within slabs, it was assumed that regions of defocusing correspond to regions of

maximum broadening and complexity in body waves. Slabs that thicken or have a reduced velocity

contrast below 650 km depth predict a different regional pattern of waveform broadening compared

to that predicted by slabs that penetrate the 650 km discontinuity for a long distance as a thin

tabular structure. Data from the Kuril-Kamchatka slab are consistent with advective thickening

or reduced velocity contrast below 650 km depth. The particular pattern of S and ScS waveform

broadening in North America from deep focus events in this region is more likely to be a conse-

quence of a slab effect than an attenuation effect.

CONCLUSIONS AND RECOMMENDATIONS

Slab Effects on mb of Aleutian Tests

The sparseness and noise in raw mb data (figure 4) do not allow any more definitive conclusion

to be made than the concentration of negative mb anomalies to the north at distances greater than

530 are generally consistent with a shadow zone Predicted both in the ray tracing shown in figure

2 and the synthetic anomaly pattern in figure 3. If mb data are corrected for receiver and path

attenuation effects, however, the agreement between observed and prelicted log amplitu'e data
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is excellent for the focusing and defocusing effects of the Aleutian slab. A negative bias of 0.1

mb units is predicted from the most probable network average of mb. A similar defocusing body

lies beneath the Pahute Mesa region of NTS (Taylor, 1983), having a similar relative location of

teleseismic rays reaching a dense concentration of stations in a global network (Cormier, 1987).

This situation would will tend to mitigate the need for or reduce the value of a relative correction

for near source focusing and defocusing when NTS and Aleutian tub's are compared.

The lowest amplitudes in predicted and observed data are due north, perpendicular to the

strike of the Aleutian slab, at ranges exceeding 530 . This is the region in which evidence of

pulse broadening has been reported in long period and broadband waveforms from shallow focus

Aleutian events (Engdahl et al., 1989). The coincidence of the region of waveform broadening with

the region of defocusing suggests that the pulse broadening is caused by slab diffraction (Vidale,

1987; Cormier, 1989).

IMethods of Waveform Synthesis for Slab Effects

New constraints can be derived from digital waveform data through investigations of the effect

of the Aleutian slab on P waveform broadening and complexity. Both finite difference (Vidale,

1987) and Gaussian beam synthetics (Cormier, 1989; Weber, 1990) have been applied to calculate

these elfv-ts. The computational expense of the finite difference approach practically limits its use

to two-dimensional geometry. Although limited three-dimensional results have been obtained with

the standard Gaussian beam approach, it is close to the limits of its applicability with most slab

models and cannot properly describe the Fresnel zone in the vicinity of the source region in the slab
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(Cormier and Kim, 1990). A promising new approach to calculating frequency dependent effects of

slab structure is a form of Born scattering approximation that does not require a reference medium

(Coates and Chapman, 1991). This approach should be capable of including the low frequency

scattering of energy into the slab diffracted phase by the zones of high gradient defining the slab.

Contours of Fresnel zones can be calculated from intermediate results of the Born scattering theory.

Figure 6 shows the results of a Fresnel zone calculation for source within the high velocity slab shown

in figure 5. Combined with maps of zones of strong gradient (figure 7), the Fresnel zone maps can

be used to qualitatively predict which source/receiver pairs will exhibit waveform broadening.
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Figure 1: P velocity model of the Aleutian slab from Creager and Boyd (1989). Location of
Amchitka nuclear tests relative to the slab structure is shown by the asterisk at the top.
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Figure 2: P and PcP ray paths for the slab model and source position shwon in Figure 1. Cross
section of the Earth is in a plane perpendicular to the strike of the slab, containing the source.
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Figure 3: Predicted P amplitude anomalies contoured as magnitude residuals for the slab and source
position shown in Figure 1. Plot is an equal area geographic plot, with North at the top. The
blank region in the center corresponds to distances less than or equal to 350 great circle degrees.
The outer radius corresponds to the distance of core grazing P waves.

Cannikin mb Residuals
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Figure 4: Observed Mb residuals of the Cannikin nuclear test calculated with respect to the maxi-

mum likelihood mb reported by McLaughlin (1990)
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Figure 5: Shear velocity contours of a deeply penetrating slab model having advective thickening
below 650 km.
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Figurc- 7: Contours of IVVI/V for shear velocity of the slab model shown in Figure 5. The origin
of scattered low frequency energy in a slab diffracted pulse can be found by overlaying Figure 6
onto this figure.
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ABSTRACT

Virtually all regional phases can be strongly affected by vertical velocity gradients. The best

known effects are on the Pn and Sn, in which small changes in the vertical velocity gradient

beneath the Moho produce large changes in the decay of Pn and Sn with distance. Methods of

synthesizing complete regional seismograms often inadvertently ignore the effect of crustal gradients

by parameterizing the Earth model with thick, planar homogeiteous layers. To address this problem

we have modified the locked mode method of synthesizing complete regional seismograms to include
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the Langer uniform asymptotic approximation to vertical wavefunctions within layers having linear

vertical velocity gradients. Synthesis of complete regional seismograms using the Langer-locked

mode confirm that the Pn and Sn phases are strongly affected by the magnitude of the velocity

gradients beneath the Moho, but that Lg is only weakly affected by the details of crustal layering.

Tests were made to quantify the error in the use of the Langer approximation as the magnitude

of the vertical gradient increases and/or frequency decreases. At sufficiently small magnitude of

gradient and/or high frequency, good agreement can be obtained between synthetics computed

using the Langer-locked mode method, the colocation method, and the conventional locked mode

method in models parameterized by thin homogeneous layers. Errors introduced by the use of the

Langer approximation in calculated pole positions, residues, and eigenfunctions are bounded by 5%

for frequencies f 5 IVVI. An upper bound to the error in the time domain can be estimated from

this inequality using either the peak frequency in a narrow pass band or the lowest frequency in a

broad pass band. When 10 or more thin homogeneous ± yers are required to represent accuratwly

the seismic wavefield in a gradient layer, it is usually more efficient to represent the gradient layer

by continuously varying functions itt the vertical direction and employ the Langer approximation,

provided the errors in the Langer approximation remain within acceptable limits. By reducing the

number of parameters needed to describe an earth model, the Langer-locked mode method simplifies

tihe inverse problem of determining structure using observed and synthetic complete seismograms.

It also facilitates the use of known relations for the effects of continuously varying pressure and

temperature on elastic moduli and density.
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INTRODUCTION

Complete seismograns at local and regional distances are now routinely computed in plane layered

models for a variety of source receiver geometries, source depths, and source types by integrating or

summing over wavenumbers (e.g. Bouchon and Aki, 1977; Kind 1978; Wang and Hermann, 1980;

Mandal and Mitchell, 1986; Mandal and Toks~z, 1990) or summing locked or leaky modes (e.g.

Harvey, 1981; Kerry, 1981; Hladdon, 1986; Nolet et al., 1989). The computational xpense of these

calculations remains relatively cheap as long as the crust and ipper mantle model can be described

by a small number of planar, homogeneous layers.

Seismograms synthesized in models composed of a small number of plane homogeneous layers

ignore the continuous depth dependence of elastic moduli. Usually seismograms are synthesized

in simple models composed of two or three homogeneous layers of crust overlying a homogeneous

lid, low velocity zone, and upper mantle beneath the lid. Since Earth curvature is ignored in these

calculations, the model is effectively one in which each layer has a small negative gradient with

depth.

A truly realistic earth model would include three-dimensional distributions of heterogeneities

having a broad spectrum of scale lengths. At wavelengths much larger than the largest scale length

of heterogeneity, the propagation of the wavefield in such a model can be accurately calculated in

an equivalent model, which is generally anisotropic. If there are no preferred orientations, shapes,

or periodicities in the distribution of heterogeneities, and if the ensemble averages of densities and

elastic moduli primarily increase or decrease as a function of depth, then the equivalent model can be

most simply represented by a small number of vertically inhomogeneous, isotropic layers. Synthesis
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of the wavefield in this long wavelength, equivalent model ignores the effects of scattering, which

become important as the wavelength approaches the size of the scale length of heterogeneities,

but still includes important effects of mean vertical gradients on the interference seismic phases

propagating horizontally between vertical discontinuities. Such a model also facilitates comparison

of estimated velocities and densities with the predictions of theoretical and empirical relations for

the effects of vertically varying pressure, temperature, pore fluids, and crack density.

Virtually all of the regiopal phases can be strongly affected by vertical velocity gradients. One

example is dispersion of the fundamental mode Rayleigh wave, or Rg phase, at local and regional

distances. Although often strongly scattered by surface topography and near surface heterogeneity,

good examples of dispersed Rg wavetrains can sometimes be found at epicentral distances on the

order of 50 km (e.g., Kafka and Reiter, 1987). Simple crustal models having a homogeneous layer

of 10 km or more thickness at the surface produce an unrealistically impulsive, undispersed Rg

arrival. To reproduce the observed Rg dispersion properly, the velocity and density model must

have a strong positive gradient with increasing depth.

Perhaps the best known effects of gradients on regional phases are those on the Pn and Sn

phases. In a plane layered model composed of a crust overlying a thick upper mantle lid, the Pn

and Sn phases are . 'assical headwaves traveling just beneath the Moho. Hill (1971) and terven

and Ravindra (1971) have shown how gradients transform classical headwaves into interference

headwaves or "whispering gallery waves" (e.g., Cormier and Richards, 1977; Menke and Richards,

1980). The distance decay of both classical and interference headwaves is frequency dependent.

The interference headwave decays much more slowly with distance than the classical headwave
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for a mantle having a positive. gradient with depth below the Moho and/or for a Moho boundary

incorporating earth curvature.

In this paper, we describe experiments in which vertical velocity gradients are incorporated in

models of the crust and upper mantle using the locked mode method together with a high frequency,

asymptotic approximation to the vertical wavefunctions (Appendix I) in each vertically inhomo-

geneous layer. The purpose of these experiments is to (1) quantify the breakdown in asymptotic

(Langer) approximation to the vertical wavefunctions as frequency decreases and/or the magnitude

of the vertical gradient increases and to (2) illustrate and review some of the effects of vertical

velocity gradients on the propagation of regional seismic phases. Although all of the example

seismograms are synthesized for high frequency, local and regional seismic phases, the programs

and algorithms may also be applied to lower and intermediate frequency phases at longer ranges,

overlapping the high end of the frequency band traditionally included in normal mode studies of

the whole earth.

The paper begins with a brief review of the locked mode method. Mathematical details of the

Langer approximation and its incorporation in the locked mode method are described in Appendices

I and II. The body of the paper describes the results of tests conducted to determine the accuracy

of the Langer approximation and how it breaks down as the gradient in the layer increases. A

discussion and example show how depth and frequency dependent attenuation can be included in

the Langer-locked mode method. The paper concludes with examples of synthetic seismograms in

the 100 to 1000 km range, showing that gradients near the free surface and Moho can radically

affect the propagation of some of the principal regional phases.
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REVIEW OF THE LOCKED MODE METHOD

Representation

Following Harvey (1981; 1985), the complex displacement spectra are evaluated from

RU(W, Zr, 9r, Zr) - -- RIR -i E E RA(n,w) RET(n,w, m) RE(n,w, z,) R (n,w, m, Zr, Or, Zr)

(1)

LU(WZt, Or, Zr) - -Lp'- i Z j LA(n,W) LXT(f,W,n) LE(f,W,Z.) Lk(fw, m, x,., O.,z.)

where the subscripts R and L denote Rayleigh and Love modes respectively.

RA and LA area scalar amplitude factors defined by

RkY3(O)
RA(nlW) = OY, 2(O)/Ok

(2)

LA(n, w) = LkD(0)
OVI (0)/Ok

Yj(0) and Di(0) are evaluated at the free surface (z = 0) and are defined in Appendices I and

II. RET and L ET are row vectors determined from the source jump vectors. R and Lt are defined

from products of eigenfunctions for displacement (RE1, RE2) and LEl evaluated at the receiver

depth (z = z,) and vector cylindrical harmonics P, ]§, C:

RP(lwC,mZri,., z) = RE1(n,w,z,)P(n,w m,ZrsOr) + RE2(nw,r.)§(n,,m,x., Or)

(3)

L(n,,,m,,.,zr,r) = LE1(n,W,zr.)1(n,w,m,x.,O,)

38



j?. I and LI are branch cut integrals, which account for energy that cannot be represented by

normal modes, and are associated with near vertically propagating P and S waves that leak into

the halfspace. The locked mode method does not evaluate the branch cut integrals. It chooses

the halfspace to be sufficiendy deep and fast such that all of the energy important to a particular

time window at a particular distance can be accurately represented by the locked mode summation

alone.

Implementation with the Langer Approximation

Seismograms are synthesized by evaluating the complex spectra at discrete frequencies and invert-

ing to the time domain by a fast Fourier transform. A small complex frequency can be added to

attenuate all arrivals outside of the finite time window given by the folding frequency of the discrete

Fourier transform (Rosenbaum, 1974; MUller and Schott, 1981). Harvey (1981, 1985) gives detailed

derivations of the locked mode method and describes its implementation in media described by

homogeneous layers. The principal modifications of the method for use with the Langer approxi-

mation are concerned with the calculation of the eigenfunction vector E and the scalar amplitude

factors RA and LA (Appendices I and II) The partial derivatives with respect to k appearing in the

amplitude factors are calculated by difference derivatives.

Since the Langer approximation describes turning rays in each layer, it is desirable to include

the effects of earth curvature using a locked mode representation in fully spherical rather than

cylindrical coordinates. Accordingly, all formulae in Appendices I and II are given as functions of

radially varying velocities and density and ray parameter, p, in a spherical earth. For applications

to high frequency regional seismograms, insignificant differences will be obtained between results
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using a representation written in terms of cylindrical harmonics F, A, e versus the results using a

representation written in terms of spherical harmonics, provided that the wavenumber k is associ-

ated with the ray parameter p in a spherical earth by the relation, k = wp/Re, where R, is the

radius of the earth. For values of the non-dimensional products kx or wp exceeding 5, the correction

factor needed to make cylindrical harmonics reproduce the result obtained with spherical harmonics

is given by x/A/sin(A) (Muller, 1971; Cormier and Richards, 1989). Since this factor varies only

between 1.0 and 1.002 for distances between 0 and 1000 km., we have omitted this correction in

our test calculations and simply used the cylindrical harmonic representation of equations 1 and

3.

The Langer approximation can also be implemented in methods of synthesizing complete seis-

mograms that numerically integrate over horizontal wavenumber and slowness (Cormier, 1980).

The primary advantage of the locked mode method is that most of the computational effort in-

volved in the calculation of the amplitude factors and eigenfunctions can be cataloged for use with

different source-receiver geometries and different moment tensor representations of point sources.

Although response functions can be similarly cataloged in approaches that integrate or sum over

wavenumber or slowness, this is rarely done in practice. A secondary advantage of the locked mode

method is that a large body of literature exists in modal notation on inversion for structure and

source parameters. The analysis of problems using normal modes of the whole Earth at low fre-

quency and long range can usually be directly adapted to higher frequency and shorter range using

locked modes (e.g., Gomberg and Masters, 1988).
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ACCURACY OF THE LANGER APPROXIMATION

The Scalelength Parameter and Reference Models

The Langer approximation assumes decoupling between P and S waves and up- and down-going

waves in each gradient layer, and the criteria for its accuracy are thus similar to those used in ray-

asymptotic solutions to the elastodynamic equation of motion in inhomogeneous media (Richards,

1976). Qualitatively, the Langer as well as all other ray-asymptotic approximations to the solution

of the elastodynamic equation of motion are known to become less accurate as non-dimensional

ratios A/(v/Vv) increase, where v is a P or S velocity or density (Richards, 1976; Chapman, 1974).

Another way in which this is commonly phrased is that the wavelength must be much smaller

than the scalelength of the medium, L, where L is the maximum of (ac/IVc,/3,/jVf3,p/IVpj)

(Beydoun and Ben-Menahem, 1985). A goal in this study is to quantify the breakdown in the

Langer approximation as the scalelength of gradient layers decrease, determining exactly how large

the ratio A/L can be before errors in calculated displacement exceed some specified bound.

The first step in sut.h a study is to choose accurate reference synthetic seismograms in models

having strong gradients. Spudich and Ascher (1983) published synthetic seismograms calculated

by the numerical colocation method for a simple model consisting of a gradient over halfspace.

The gradient layer in this model was parameterized by a sequence of 40 thin layers (Figure 1), the

width of each thin layer approximately equal to one-tenth the wavelength of shear waves at 1 lIz.

Excellent agreement was found between the locked mode synthetics and the colocation synthetics.

This result confirmed that locked mode synthetics computed in models in which gradient layers

are represented by thin layers can be used as accurate reference synthetics to test the Langer
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approximation.

To test the accuracy of the Langer approximation, seismograms were synthesized using the

locked mode method using the Langer approximation in a series of models with increasing gradients

in P and S velocity and density in a layer over a halfspace (Figure 2). The series of models and

the frequency band of synthesis were purposely chosen to explore the breakdown of the Langer

approximation at large of A/L.

Dispersion Curves

Figure 3 compares the dispersion curves of the locked Love and Rayleigh modes calculated with

Langer approximation in a thick continuous gradient layer (dashed line) with those calculated by

parameterizing the gradient layer with thin homogeneous layers (solid line). Results are shown only

for model 1, which has the strongest surface gradient in Figure 2. Even for the severe gradients in

the surface layer of model 1, in which A/L ranges from 40 at 0.1 Hz to 3 at 1 Hz, dispersion curves

calculated using the Langer approximation closely track those calculated in the model parameterized

by thin homogeneous layers. As expected, the errors in the Langer approximation are generally

largest at lower frequency, where A/L is largest. The primary region of error occurs for the low

frequencies of the fundamental mode. This is not unexpected since most of the energy of the

fundamental mode in this frequency band is confined to the strong gradient layer near the surface.

Errors in the dispersion of Love modes show a simple dependence on frequency and begin to be

acceptably small enough for accurate calculations even at values of A/L approaching 1. Errors

in the dispersion of Rayleigh modes have a slightly more complex behavior. In the dispersion of

Rayleigh modes, note a region of phase velocities and frequencies between 4.2 to 6.0 km/sec and
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0.4 to 0.7 Ilz. In this region of the dispersion plot, the thin layered calculation shows a group of

4 to 6 dispersion curves having two inflections in curvature occurring over short ranges of about

0.2 km/sec in velocity and 0.1 Hz in frequency. The Rayleigh dispersion curves calculated by

the Langer approximation do not have these inflection points in this region of the plot. These

inflections generate extrema in the dispersion of group velocities and will be associated with Airy

phases centered on frequencies between 0.4 to 0.7 lz. An examination of the phase velocities,

group velocities, and ellipticity of the Rayleigh modes between these inflection points suggests that

the inflections are most likely to be products of P to SV coupling and conversion within the steep

surficial gradient layer. Since the Langer approximation does not have these inflections in this

region of the dispersion plot, it will be unable to account for the frequency dependent coupling

and conversion of P to SV and SV to P waves in the gradient layer. This is primarily a problem,

however, at large values of AIL. Comparisons of Rayleigh and Love mode dispersion for models 2

and 3 shown in Figure 2 found no such discrepancies when AlL was less than 0.1.

Scalar Amplitude Function and Eigenfunctions

The scal,-r amplitude functions, RA, LA, which are generated by a residue calculation at a pole

in the complex wavenumber plane, are related to a depth integral of surface normalized energy
(Harkrider and Anderson, 1966), i.e., RA = fo p[RE(z) + RE (z)]/REl(O) dz. Figure 4

compares the scalar amplitude function, RA, for the fundamental Rayleigh mode in models 1, 2,

and 3 calculated using the Langer approximation in the surface gradient layer (dashed line) versus

those calculated by parameterizing the gradient layer by thin layers (solid line). Once again, it is

clear that errors in the use of the Langer approximation become smaller as A/L decreases. Errors
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remain sufficiently small for practical calculations for AIL less than 0.4. Errors for model 3, having

the lowest magnitude of gradients in the surface layer, remain small at much higher values of

A/L than those errors for models I and 2. This relative behavior can be explained by the energy

distribution of the fundamental mode in the different models. The energy of the fundamental

mode is confined to the gradient layer in model I throughout the plotted wavelength band, whereas

progressively more energy is distributed in the zero gradient halfspace in models 2 and 3. Hence,

for the calculation of the scalar amplitude factors, the breakdown in the Langer approximation

depends not only the size of scale length of a gradient layer, but also on the distribution of energy

with depth of specific modes in layers having strong gradients.

The error in the eigenfunctions of individual modes (e.g., Figure 5) becomes acceptably small

(less than 5%) when AIL less than 0.4. The results of these tests can be summarized in terms

of frequency by a rigorous upper bound of 5% error in computed pole positions, scalar amplitude

functions, and eigenfunctions for frequencies f _ 5 jVVI.

Synthetic Seismograms

Seismograms are synthesized by summing modes over a broad band of frequencies. An upper bound

of error in a synthetic seisniogram can thus be based on the tests of errors of pole position, residue

functions, and eigenfunctions ,sii, either the lowest frequency (longest wavelength) in a broad

band ,ynthetic or the domi:nant frequency (wavelength) of a narrow band synthetic.

Figures 6 and 7 compare reference synthetics and Langer approximated synthetics for models 1

and 3 shown in Figure 2. Following the examples shown in Spudich and Ascher (1983), the seismo-

grams were synthesized to represent the far-field particle velocity of a step function in displacement
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convolved with a low pass filter that rolls off with a cosine taper at 0.5 lIz. Thus, the pass band of

the synthetic seismograms has a peak centered at about 0.5 lIz.

Although kinematic errors in the mode dispersion calculations are generally small throughout

most of the frequency band, the dynamic errors in mode amplitudes in model I are sufficient to

produce poor matches in the group velocity band corresponding to the fundamental mode and the

first few higher modes. These effects can be seen in Figure 6, in which the early portion of the

seismograms computed by the two methods are more closely in phase but become progressively

out of phase in the time window corresponding to the arrival of the fundamental mode and first

few higher modes. The agreement between tne two methods is much better for the transverse

component than for the radial or vertical components of motion, undoubtedly because P to S

coupling in the gradient layer can be ignored in the Love mode synthesis.

The results (Figure 7) for model 3, which has the weakest gradient, show the match between ref-

erence and Langer approximated synthetics becoming nearly perfect. Since seismograms computed

by the two methods overlay one another to within the thickness of plotted lines, any differences

can be highlighted only by plotting the difference between the two synthetics. The difference seis-

mograms tend to be largest whenever there are time shifts in peak oscillations. Very small time

shifts (smaller than the thickness of plotted lines) can produce visible bumps in the difference seis-

mograms. At the dominant frequency of the synthetic seismograms, AlL equals 0.4. Although the

differences between the synthetics are quite acceptable in an overlay plot, a reduction of AL by one

half or more would be required to nroduce acceptably flat difference seismograms. A conservative

conclusion is that errors in the use of the Langer approximation become less than 5% when the
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ratio A/L is less than or equal to 0.2.

INTRINSIC ATTENUATION

To be practically useful, any method of synthesizing complete seismograms at local and regional

distances must be capable of including intrinsic attenuation. The incorporation of the attenuation

in the Langer approximation simply consists of the analytic continuation of all formulae to complex

velocities (Cormier and Richards, 1976, 1989). Care must be exercised in the definition of branch

cuts of square roots and fractional powers appearing in both the analytic expressions and function

subroutines used in evaluating the Langer approximation (see Appendix I), but this is not an

insurmountable problem. The Langer subroutine modified for use with locked mode calculations

has been tested in problems involving integration in the complex ray parameter plane combined with

complex, frequency dependent velocity. It returns generalized vertical wavefunctions and slownesses

that are continuous in the complex ray parameter plane except for poles and branch cuts, which

emanate from complex ray parameters corresponding to grazing incidence on boundaries in an

anelastic model. Test calculations have demonstrated that the position of these singularities does

not impede a successful search for the complex zeros of the dispersion functions of locked modes in

an anelastic model.

An absorption -band model of attenuation is assumed (e.g., Lundquist and Cormier, 1980). At

any radian frequency w in this model, the complex velocity is given by
1 + 2/7rQ-' A,,4

1 + 2/7r A, (4)

where
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A,,& In(iW + W1
O n iW + W2)

(5)

A,. = in (i', +

Mr, + W2)

fir is the real velocity at a reference frequency wr. Equation 5 is uniformly valid both in the

center of the absorption band as well as across and through the high and low frequency corners of

the absorption band. Complex P velocity a is calculated by the same formula, with an option to

constrain attenuation to be pure shear or to specify a different peak attenuation parameter Q;' for

P waves. Ideally the reference frequency w, should be chosen to be in the middle of the frequency

band of the seismic data used in determining a trial model for a given region. Complex velocities are

calculated at each layer boundary by equation 5 above, and linear gradients of complex velocity

are assumed in each layer. The delay time function r needed by the Langer approximation is

calculated as described in Appendix II, but it now must be recalculated at each frequency. It is

possible to specify different peak Q# values as well as different upper and lower limits, W, and W2 ,

of the relaxation band at the top and bottom of each inhomogeneous layer.

A test anelastic model is shown in Figure 8. The attenuation model is an absorption band

model in pure sh-.r attenuation having gradients in peak attenuation Q01, and low and high

frequency corners, w1 , W2, of the relaxation band. A minimum value of Q# = 20 is assumed at the

surface. The velocities and Q values are similar to values measured from regional seismograms in

New England (Kafka and Reiter, 1987). Locked mode seismograms were synthesized in this model

using two different approaches. In the first approach, only the real part of the complex velocities
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is used in calculation of mode amplitudes and eigenfunctions, and a complex phase velocity was

substituted in the cylindrical harmonics describing the horizontal propagation of each mode. This

complex phase velocity is taken from the complex pole k estimated by first order perturbation

theory. This is the standard approach for handling attenuation in surface wave and locked mode

calculations (Harvey, 1985; Panza and Sudhadolc, 1987), and is assumed to be accurate if the Q

factor is sufficiently high. Day et al. (1989) have shown this approach to be inaccurate for some

regional seismic phases even at Q values on the order of several hundred. For this reason, an

exact approach was developed, in which a search was made for the complex roots of the dispersion

function and all formulae, including amplitude factors and eigenfunctions, were evaluated at these

complex roots. The complex pole searching algorithm was based on one suggested by Schwab and

Knopoff (1971), with modifications near osculating points of the dispersion curves. Near these

points, the complex roots are found by the same algorithm for a series of increasing Q- 1 values,

approaching the true Q- 1 model. Checks are made for duplication or omission of poles at the end

of this procedure for each frequency.

Figure 9 compares the results of these two methods for incorporating attenuation of the funda-

mental mode Rayleigh wave. The seismograms computed by the different methods nearly overlay

one another at all distances. The exact method reduces some high frequency numerical noise,

which is barely visible at the scale of Figure 9. The differences in the complex phase velocities

computed by the two methods are on the order of 0.001 km/sec in the real part of the complex

phase velocity and vary from 1 x 10- 10 to 1 x 10- 4 km/sec in the complex part of phase velocity

as frequency increases up to 2 JIz. The differences between the depth behavior of the real part of
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the complex eigenfunctions are insignificant between the two methods. From these results it can

be concluded that the perturbation approach to attenuation remains very accurate in the synthesis

of the fundamer tal mode for Q values as low as 20. For the synthesis of higher modes, particu-

larly those contributing to refracted P and S and interference head waves, more detailed tests have

shown that the perturbation approach introduces significant error as Q values decrease below 100.

Experiments in progress by an author of this paper (Ilarvey) document a progressive breakdown in

the perturbation approach as phase velocity increases, corresponding to more vertically propagat-

ing waves in attenuating layers. The safest approach to handle attenuation accurately in a locked

mode method is to develop all calculations around the exact complex modes. Our motivation in

discussing this example is simply to show that an exact complex mode search can succeed with the

use of the Langer approximation together with complex dispersive velocities. Use of the Langer

approximation easily permits the implementation of the assumption that gradients in the real part

of the elastic moduli are also associated with gradients in the imaginary part of elastic moduli.

It is appropriate to conclude this section with some cautionary words. Often a very low Q

layer is required in a surface layer in order to produce realistic simulations of seismograms observed

at local and regional distances (e.g., Panza and Sudhadolc, 1987). If the apparent attenuation

of such a lay"er is truly due to viscoelasticity, its effects can be accurately calculated by complex

locked modes. It is more likely, however, that such apparent low Q's are due to a combination of

scattering by topography of layer boundaries and volumetric heterogeneities and frictional sliding

of grains and open cracks. Neit.ir of these effects can be simulated by a combination of vertically

varying layers and linear viscoelastic relaxations.
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EFFECTS OF GRADIENTS ON REGIONAL PHASES

To test the effects of crustal and upper mantle gradients on regional seismic phases, locked mode

synthetics were computed in two simple models MH and MG (Figure 10). Model MH consists

of a two-layered crust overlying a homogeneous mantle. MH has also been used for testing and

benchmark timing of many different techniques of computing complete seismograms at regional

distances (Richards and Mithal, personal communications). Model MG consists of a single crustal

layer having a positive gradient with depth, overlying a mantle having a positive gradient with

depth. The mantle gradient is consistent with the increase in seismi,: velocities typical of reference

earth models between the Moho and 400 km depth. The depth averaged crustal velocities of MH

and MG are identical. Both models have an attenuation structure, with Q's in a high enough range

that simple perturbation theory ca1 be accurately used to calculate the effects of attenuation in

the locked mode method. Seismograms were synthesized in a frequency band up to 2 Hz for the

source and receiver geometries used by W-Y. Kim (1987), who synthesized seismograms in model

MH using wavenumber integration.

The synthetic seismograms (Figure 11) for the first 10 higher Rayleigh modes (fundamental

mode excluded from sum) are very similar in peak amplitude and length of coda in both models

MH and MG. The group velocity window of the energy centroid corresponds to that expected for the

Lg phase. The strong similarity of the synthetic seismograms suggests that Lg is not very sensitive

to the details of the crustal model, its coda primarily being controlled by the total thickness of the

crust and its average shear velocity. It is probably possible to simulate realistic Lg phases using a

very few number of crustal layers. Introduction of crustal layers in a modeling experiment may not
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be necessary unless there is compelling evidence for crustal discontinuities observed in the earlier

time window in the form of refracted body waves and interference head waves.

To illustrate the effects of gradients in the mantle and to provide a further check on the accu-

racy of the Langer approximation in more complicated models at longer range, seismograms were

synthesized in models M1t and MG using both the Langer-locked mode method and a wavenumber

integration method (Mandal and Mitchell, 1986) in which gradient layers were parameterized by

thin homogeneous layers. For the wavenumber integration method, about 100 thin layers were used

to compare with the results of the Langer-lc -ked mode method (1.5, 3, and 7 km thick layers were

used for the upper 38 kin, 38-128 kin, and deeper than 128 kin, respectively). In this frequency

band, ringing effects were observed in the wa enumber integration method when the thin layers

simulating the gradient zones exceeded 10 km in thickness.

The close agreement (Figures 12 and 13) in the synthetics calculated using quite different

approaches and model parameterizations demonstrate that the Langer approximation is sufficiently

accurate for the gradients of model MG. The maximum magnitude of gradient in model MG occurs

in the P velocity of the mantle, which is 0.0038 sec- 1. At this gradient, errors in the Langer

approximation are bounded by 5% for frequencies f 0.016 Hz or wavelengths A < 480 km. The

lowest observable frequency component in the pass band shown in Figures 11-13 is about 0.2 Iz.

Any differences between the synthetics for model MH and MG are thus truly due to differences

in wave propagation in the two models and not to the method of synthesis. We found the peak

amplitudes obtained with the plane layered method to be extremely sensitive to the thickness of

the thin layers chosen to simulate the gradient layers. Thus we attribute small differences in the
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peak amplitude scaling of the two inethods to interference effects of thin layering. In a comparison

of the results for models MH (Figuie 12) and MG (Figure 13), it is seen that the seismograms are

very similar at closer ranges but at 300 km some differences begin to be notable. Pn and Sn are

very weak in the MR simulation, but are very strong in the MG synthetic. Pn, Sn, and crustal

reverberations converted to Pn and Sn are so strong in the MG synthetic that they dominate Lg in

amplitude, and the seismogram becomes a series of spikes consisting of P and S reverberations in

the crust converted to Pn and Sn interference head waves in the mantle. The comparison confirms

what is known about Pn and Sn as interference head waves in models having positive gradients

below the Moho. A positive gradient acts to enhance the amplitude of the interference head wave

far above what would be predicted for a classical head wave in a homogeneous layer (Hill, 1971;

Cerveny and Ravindra, 1971; Menke and Richards, 1980). Although the steep mantle gradients of

model MG may not be appropriate for many regions, they are within the probable range of lateral

variations in upper mantle structure. As noted by Hill (1971), a tradeoff exists between Q and

upper mantle velocity gradients in the modeling the amplitude of Pn and Sn. For example, the

relative excitation of Pn and Sn versus Lg in model MG can be made to appear more similar to

that in model MH by decreasing Q in the mantle.

CONCLUSIONS

In this paper, we have dezmonstrated that even small gradients of VV = 0.004 sec - 1 can substan-

tially affect the distance decay of interference head waves such as Pn and Sn. Lg, on the, other

hand, is only verly weakly sensitive to details of crustal layering or gradients. The peak amplitude

52



ACKNOWLEDGEMENTS

During the course of this research, we appreciated and benefited from suggestions and comments by

Charles Archambeau and Paul Richards. This research was supported by the Advanced Research

Projects Agency of the Department of Defense, monitored by the Geophysics Laboratory under

contract F19628-88-K-0010.

"5.5



positions and eigenfunctions compared to those synthesized using the Langer approximation in the

gradient layer parameterized by analytic velocity functions. A calculation in a thick homogeneous

layer, however, would always be more efficient than a calculation using the Langer approximation

in an inhomogeneous layer of the same thickness. A model parameterization that may be the best

compromise between computational efficiency and realism in the behavior of regional phases would

be one having a crust composed of homogeneous layers overlying a mantle composed of gradient

layers. Seismograms synthesized in such a model could accurately predict the Lg phase as well as

the Pn and Sn phases. (This study did not investigate the importance of crustal gradients for the

Pg phase.)

The Langer-locked mode approach to synthesizing complete seismograms may also offer some

advantages in waveform inversion for earth structure. By reducing the number of parameters needed

to describe a model, the inverse problem for structure would be simplified and fewer experiments

would be needed to determine the maximum number of resolvable layers. A layer need only be

introduced when the data firmly suggest the existence of first order discontinuities. Furthermore,

specification of the earth model by a small number of gradient layers, bounded by well known first

or second order discontinuities, facilitates a comparison of inverted parameters with the velocity,

attenuation, and density behavior predicted by theoretical or empirical formulae given as functions

of pressure and temperature.
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APPENDIX I - THE LANGER APPROXIM ATION

Vertical Wavefunctions

The notation for the Langer approximation (Langer, 1932; 1949) differs among different authors

who have applied it to seismic wave propagation. (Richards, 1976; Woodhouse, 1978; Chapman,

1971; Doornbos, 1981), involving either ilankel functions of order 1/3 or Airy functions of different

types or arguments to give exponentially decaying and growing type solutions below a turning

point. The notation adopted here is basically that given in Aki and Richards (1980).

The Langer approximation is a uniformly asymptotic approximation to the vertically separated

part of the solution to the elastodynamic wave equation in a region in which elastic moduli and

density vary continuously with depth. The zeroth order term in frequency in the asymptotic solution

is given as

7r(=)(r) = e A1/) Ai(-e 3

(AI.1)
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where

Ai is an Airy function and

= (3/2wT. )2/3

(# (3/2&),.,)2/3

=
t
p

Tr3 = Apdr
r= 1 2 r

= 11#2 /r2

a and jO are the P and S velocity respectively at radius r, p is the ray parameter in a spherical

Earth, and rp is the turning point radius, i.e., that radius at which A,, or A, vanishes. In each

inhomogeneous layer, the velocity functions a(r) and P(r) are assumed to be analytic and to possess

only one turning point rp in the domain of complex p used in synthesizing a seismogram.

The ?r wavefunctions are those for P waves; the o wavefunctions are those for S waves. Several

possible pairs of independent solutions may be chosen to define fundamental matrices, which can

be used to solve problems in wave propaga'ion in media consisting of a sequence of vertically

inhomogeneous layers. The pairs (7r(1), ir(2)) and (a(l), C( 2)) correspond to up- (1) and down-

going (2) waves. The pairs (ir('), 7r( 3)) and (a('), a(3)) correspond to up-going (1) and standing

or evanescent waves (3). When the turning point radius rp is greater than r and 97 i
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with decreasing r, the r, the wavefunctions 7r( 3) and a(3) are exponentially decaying functions with

decreasing r.

Vertical Slownesses

Implementation of the Langer approximation in problems in which elastic boundary conditions

must to be satisfied at model discontinuities is simplified by the introduction of generalized cosirnes

(Richards, 1976; Aki and Richards, 1980) or generalized vertical slowness functions, which are

defined as follows

dr "

=-dir(2)
dr "

d7r( 3)/(iWIr(3 )

dr

(AI.2)

O= do( l ))

d i
dor (3) (i .( )

The normalization of the vertical wavefunctions differs slightly from that given in AMi and

Richards (1980) and has been chosen such that the following relaflons are satisfied

r(1)7r(2) + r(2)7r.() = 1

71) r(3) + r(3)jr( l) =
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(AI.3)

ip()7r(2) + 40(2)7r0)= 1

a(1)7r(3) + 0a(3)7r() = 1

These relations can be demonstrated by substituting the Langer approximation for the vertical

slownesses and using the Wronskian relations between the Airy functions having different argu-

ments. Equations AI.3 are satisfied exactly when only the zero order terms in frequency are kept

in the definitions of the vertical slownesses.

Fundamental Matrices

Boundary conditions in a medium consisting of n inhomogeneous layers can be handled in the same

manner as a medium consisting of homogeneous layers, but with the Langer approximation to the

vertical wavefunctions and vertical slownesses substituting for exponential functions and cosines.

P-SV

As a function of radius r, the fundamental matrix for P-SV propagation and Rayleigh modes is

taken to be that given in Cormier (1980):

'r(2) p/r a(l) p/r 0(2)

,F(r) -i p/r ir(i) -i p/rr(2 ) i T( ) i/a(2)

-iA r( I)  -iAir(2) iBCa(1) -iOma(2)

B@( 1) -B'Z( 2 ) Aao() Aa(2)

(AI.4)
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iA7r(2) B pi(2) -7r(2) -i p/r 7(2)

-iAr(1 ) B 7r(') - T(1) i p/r 7r(' )
F(r) - =

-iB)a(2) Aa(2) - p/r a(2) iija(2)

L-iBila() -A(() p/r a(l) i~la(') j

The fundamental matrix may alternatively be defined using the wavefunction pairs (ir(1), r(3))

and (a(l), a(2)) (Cormier, 1980). This fundamental matrix has exactly the same form as AI.4,

but with (3) replacing the (2) superscripted wavefunctions and the accent replacing the' in the

vertical slownesses. In all calculations, the (3) superscripted wavefunctions are substituted for the

(2) superscripted (down-going) wavefunctions in the p domains in which exponentially decaying

and growing vertical wavefunctions exist. With a few simple modifications described by Doornbos

(1981), the fundamental matrix defined in AI.4 can be applied to layers having a negative as well

as a positive gradient with depth.

Fundamental Matrix for SH Propagation

The SII fundamental matrix and its inverse are

F(r) = v [ 1/20(1) A- 1/2  (2)

A 1/2 ar() i jj1/2 //a(2)

(AI.5)

F ~ ~r-- i = 1 1
1 / 2  O r ( 2 ) --, A - 1 / 2  ( ( 2 )

/-1 #1/2 a.(l) t-l1/2 a(1)
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Model Parameterization

Since the Langer approximation allows layers to be vertically inhomogeneous, the effects of Earth

curvature are built into the model parameterization. All formulae are evaluated using velocities

and densities given as functions of radius, r, from the Earth's center. In each inhomogeneous layer,

the velocities are specified by analytic functions, which have only one turning point solution in the

p domain of interest. Layer boundaries are introduced and boundary conditions are evaluated at

discontinuities in velocity derivatives as well as first order discontinuities.

To provide analytic forms for the delay time functions r", and r,8, each inhomogeneous layer is

parameterized by making the flattened velocity be a linear function in the flattened depth coordi-

nate, z. The usual (Mfiller, 1971) mapping between the flattened velocity function vf (z) and the

true velocity function v(r) is assumed :

v(r) = r v z)IRo

where

z- = R, log(r,/R,)

where Re is the radius of the Earth.

The flattened velocity function vj is assumed to be a linear function in flattened depth, coln-

puted from the values of v1 at flattened depths z- and z+_I corresponding to radii r- and r+

bounding the top and bottom, respectively, of vertically inhomogeneous layer n. The analytic form

of the delay time function r(r) becomes
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Z+ - z [ R/p -'R.2/ (AI.6
r(r) = Vf(zfn) -i(zn) - v - Re/p In V(A.6)

This parameterization is adequate in representing thick regions of the crust and uppermost

mantle, in which velocity gradients are nearly constant or slowly varying. Usually fewer than ten

inhomogeneous layers are needed to describe models having several first order discontinuities and/or

discontinuities in gradient. The r value calculated above is exactly equivalent to the r in a spher-

ical earth. The flattening transformation is simply used to interpolate spherical velocity between

two depths such that analytic integration of the r integral becomes possible. Alternative model

parameterizations, which give an analytic form of r, are discussed by Cormier (1980), erven, and

Jansky (1983), and Cormier and Richards (1989).
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APPENDIX II-- MODE AMPLITUDES AND EIGENFUNCTIONS

Rayleigh Modes

The summation of locked Rayleigh modes requires the calculation of an antisymmetric Y matrix

having five independent elements.

The Y Matrix

At the radius r, at the top of the capping layer, starting values of the Y matrix are taken to be

=1 A- _ BC! A" A'8'

Y13 = -Acp/rc - Bc,\ \#

2 3 P C

Y34 = -, \ - P2 C

where i - V' ", and

= i p2/r -

Acc= i p 2/rc - 1a

A= 2p2/rc' it, - P

Bc = 2 p/rc' ic
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and it., pc, ac, f3l are the shear moduius, density, P velocity, and S velocity, respectively, of the

high velocity capping layer. With the Yji defined here, the scalar amplitude function RA is related

to that defined in Harvey (1981), RAH, by nA" = - RAp/Re.

At any radius r, Y can be computed from the product

Y(r) = KT(r,r+) Y(r-) K(r,r + ) (AII.2)

where K is a P-SV propagator matrix equal to a product of intralayer propagator matrices for each

layer, m, m + 1, etc.

K = Km(r,r + ) K,,,+(r-,r++) .... . n(r _,,r (AII.3)

Layers are separated by boundaries at which velocities and/or densities have either first or

second order discontinuities. Within each layer, the velocity functions are continuous, analytic

functions. Each interlayer propagator matrix, Km is constructed from the zeroth o-der term in

frequency of the uniform asymptotic approximation to the fundamental matrix F of the inhomo-

geneous layer. Since the uniform asymptotic approximation of Langer is assumed, the velocity

functions within each layer must have no more than one turning point for each ray parameter, p.

With this restriction, computations can still be conducted in a complicated model having one or

more low velocity zones, as long as this model is built from "layers" in which the analytic functions

for P and S velocity have only a single turning point for each p.

The intralayer propagator is defined by

Km(, r +) = F(r-) F-l(r++,) (ALIA)

Substituting in equation AII.2 the forms for the fundamental ma;'rix and its inverse from
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equation AJ.4, and simplifying the resulting expression gives recursion relations as follows for the

upward propagation of Y matrix elements:

4
Y1 2 (r) = kdl(t;-) kW. kGn, - 2 A(r+1  ~~) W G

k=i

4
Y 1 3 (r) =-j2kd2(r-) [A(r41-)B(rn-.1) - p/rn..1 B(r,-I+)] kWn kGn

k=1

4
= (r-' E kd3(tn-) kWn kGn AI5

k=1

4
Y23(r-1) F, ~ kd4(r; 1) kWn kGn

k=1

4
n3(r n -Ikdr

1) kWn k~n + 2 p/rn-I 0Wn oGn
k=1

where the quantities kdl(Z), kWn, kGn are defined as follows:

kdl(r) = -A 2 (r) - .B 2(r) kAa(r) kAIJ

0d2(r) = A(r) p/r + B(Z) kAQ,(r) kAIJ(r)

kd3(r) =ip(r) kA#(r) (AII.6)

0d4(r) =-ip(r) kA.(r)

0d5(r) =k Ap(r) kAa,(r) + (p/r)2

k~n -kd-rl)y3 4(rn;1 ) + 2kd2(rn' 1)yia(rn -) + kd 3(zn+.l)YI4(Z;... 1 )

+kd4(rn.i)y 23(r- .1) + kds(r..)l(;. 1 n-I.
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for k 0 and(

oIfl p/r.' Y12(T...1) + [A(r+-1 ) + p/r' I B(rI )IY13(r- 1)

-A(r+ 1.) B(rI ) Y34(r- 1) (AII.8)

oat1 = 4 r -

r- /r+
=~ 7r(2)(rK) a (2 ) (r-) 7r( 1)(r+ . 1) a(1)(r+ . 1) 'n' 'n-

= _7r(2)(r-) ay()(r-) r()(r+1) oy(2)(r+ 1), 2pr~)( (AII.9)

3Gn = -7r(1)(r-) a( 2)(r-) 7r(2) (r ) ,(,)(r+1) n -!
n1 n n-i n-i 2pr p(

=G 7r(')(r-) oG(')(r-) 7r () (r71 1) a((r+ rn n-)

k,\, and AA denote the following at boundaries r- and r+

IA.(r-) = (r)

= i(r

n-1(r) = -

,Ao(r-) = -t(r)

2A,(i't-) = ir-
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3A,,(rZ.i + = r+-1

3,,(,;) = kr')

3.,-(r.+_) = ,+-,)

4A(r) =

41\,(rtn-1)=
4ApC,.+-) = -(,r;)

4 A(r) = -O,"-)

, , o C , + 1 ) = - k , . _ ,

Layer Reduction

The first term (k = 1) in the summation in equation AII.5 is of the same form as the starting

values Y matrix in the capping layer in regions of slowness in which the vertical wavefunctions

behave exponentially. When this first term is exponentially larger by several orders of magnitude

than the (k = 2,3,4,5) terms, then the Y matrix calculation may be started at a higher layer,

taking this higher layer as the capping layer. This procedure )f layer reduction is analogous to that

described in homogeneously layered models (Panza and Sudhadolc, 1987).

The Capping Layer - To Cap or Not to Cap?

A capping layer may be avoided and the starting values of the Y m ttrix defined by evaluating all

velocities and densities in AII.2 at the top of the deepest layer (r = r-) and setting Ac and A&

to the Langer generalized vertical slownesses K(r;) and (r-), respectively (Cormier, 1980). The

generalized vertical slownesses 4 and i contain~the phase information needed to represent turning
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rays in the deepest layer. In this choice, the complete seismogram can be synthesized either by

(1) numerically integrating along a contour close to the real k axis or by (2) summing residues of

locked modes at high wavenumbers and integrating along the real k axis at low wavenumbers. 're

poles at high wavenumbers represent guided waves trapped in the upper layers, while the integral

along the real k axis at low wavenumbers represents body waves reverberating at high incidence

angles in the upper layers, leaking into and bottoming in the deepest layer.

In many problems, the seismogram may be represented entirely by locked modes because the

structure provides a natural capping layer if all waves of interest bottom above or are totally

reflected by some natural layer at some depth. In the natural capping layer, the limiting forms of

the generalized slownesses and i at large values of wrl in the upper half complex p plane are

equal to the vertical slownesses in a capping layer, A,,, and A#,, defined in AII.2. Unfortunately,

this natural capping layer can be as deep as the inner core boundary for body waves interacting

with upper mantle structure. To minimize the number of numerical operations in the calculation

of dispersion functions and eigenfunctions and to retain the simplicity of a modal representation,

it is more convenient to specify a capping layer having artificially high velocities.

Eigenfunctions

Althou h propagation of the Y matrix elements has been shown to be numerically stable at arbi-

trarily high frequency (Abo-Zena 1979; Harvey, 1981), numerical problems in the calculation of the

Rayleigh eigenfunctions occur if E is calculated by multiplying propagator matrices. One approach

to this problem is to divide a layer into thin, pseudo layers, and rescale the propagator matrix after

propagation through each thin layer. Better techniques, however, can be formulated, which do not
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require the introduction of additional pseudo layers.

One technique, described by Harvey (1985), expresses the eigenfunctions in terms of Y matrix

elements by propagating the wavefield upward from the cap layer and downward from the free

surface. Thus, since the calculation of Y elements is numerically stable, so is the calculation of the

E eigenfunctions. In this technique, eigenvalues can be normalized at the source depth, offering

numerical advantages in the calculation of channel waves having vanishingly small energy outside

of a waveguide.

The technique used here also does not require pseudo layering, but retains the standard nor-

malization of the El function to 1 at the free surface. The first step in this technique is to recognize

that the stress eigenfunctions E3 and E 4 can be calculated from the displacement eigenfunctions

El and E2 by

E3 = -Y 1 4/Y4 E - Y24/Y 34 E2

(All.1O)

E4= = Y13 /Y 3 4 E1 + Y2 3/Y 3 4 E2

Using these relations, the four equations that propagat. the E vector,

E(r) = K(rr) ) (AI.11)

can be rewritten as two equations that propagate El and E2,

El~r [El(rn,)
E( = L(z,z,,) I(AII.12)
I2(r) E2(2)
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and the two equations given in AII.1O between the displacement eigenfunctions and stress eigen-

functions. Using the Yj3 defined in this paper, the eigenfunctions, Ei, are related to those defined

in Harvey (1981), E"', by El = E[', E2 -- H, E3 - R EIip, and E 4 = RE4HIp.

A new 2x2 propagator matrix L is defined having components

LI, = K 1 - K 13 Y14/Y 34 + KI14 Y'13/Y34

L12 = K 12 - K13 Y24/Y 34 + K 14 Y23/ Y34

(AII.13)

L21 = IC2 1  23 Y14/Y 34 + K24 Y 3/Y 34

L22 = K 2 2 + K 23 Y24/Y 34 + 1K24 Y23/ 34

To ensure numerical precision in a machine calculation, the individual propagator elements as

well as the recursion formulae in AII.5 for the Y matrix elements must be substituted into the

definitions of the the Lij eler.ents in AII.13, a fraction formed with the common denominator of

134, and the numerator of the fraction simplified. When this simplification is done, it is seen that

aU numerator terms that potentially are of the largest exponential order cancel. Although many

cancellations occur, the resulting expressions for the Lij elements are still quite lengthy and are

not given here.
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Love Modes

D, and D2

In this case, calculation of the dispersion function D, eigenfunction vector E can proceed by simple

multiplication of propagator matrices without loss of numerical precision. The vector (DI, D2)

in the notation of Harvey (1985) is equal to the vector ESH in the notation of Cormier (1980).

In the capping layer, (DI, D2) is simply equal to the first row of the inverse fundamental matrix

for SH waves. Any constant may be chosen to multiply the starting value of (DI, D2), since this

constant will cancel in the definition of eigenfunctions and in the ratio LkD 2(0 appearing and

the expression for the total response. Starting values of D, and D2 at the top of the cap layer are

thus taken as

DI = -i Pc/r A

(All.14)

D2 =-/l

D, and D2 are propagated upward by multiplication of SH propagator matrices. Since (DI, D2 )

are related to the inverse fundamental matrix, one must right multiply the starting values by the

SH propagator matrix.

Di(r)] Di(r ) K (r,r +) (Ar+.15)

D2 (r) D 2 (r.)

With the Di defined here, the scalar amplitude function LA is related to that defined in Harvey

(1981), LA", by LA" = LAp/Le.
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Eigenfunctions

Love wave eigenfunctions are defined by

El(r) = D2(r)/D 2(Re)

(AII.16)

E2(r) = DI(r)/D2(R,)

Using the Di above, the eigenfunctions, Ei, are relateti to those defined in Harvey (1981), E[,

ty Et = E H and E2 = ReE,21 /p. In the residue calculation, scale factors can be applied in

each layer and discarded during upward propagation. This is because all s' ale factors cancel when

rai kD2(0) sf
ratio L D (2)/W is formed. In the eigenfunction calculation, the total scale factor of each Di must

be saved in order to describe properly regions of exponential decay of the eigenfunction. In the

cases where El and E2 are exponentially small, the depth of the capping layer can be raised and

calculations started at a shallower dept!,.

Branch Cuts and Poles in the Complex k Plane

The functions that define the generalized vertical wavefunctions and slownesses contain branch cuts

emanating from points in the complex p plane corresponding to ray parameters grazing the model

discontinuities. Extreme care must be exercised both in the definition and the choice of branch

cuts appearing in all fuct'r-s oi iariables raised to fractional powers. A subroutine has been

designed such that substitution of Langer generalized wavefunctions and slownesses into coefficients

of refl. ion, transmission, and r'onversion always gives expressions that are analytic everywhere
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in the complex p or k plan , except for discrete poles and zeros. This Langer subroutine has been

tested in a wide variety of problems involving both complex velocities and complex p. For examples,

discussion, and published subroutine, see Cormier and Richards (1989).

Although individual terms in a ray expansion of the layered response function have poles oriented

at ±60 degrees with respect to the real p or k axis (Scholte, 1956; Nussenzweig, 1969; Ludwig, 1970;

Richards, 1973), the unexanded response function has poles only on the real p or k axis. A simple

illustration of how the ±60 degree oriented poles vanish in the complete response function can be

made by considering the dispersion function for Love modes in a vertically inhomogeneous layer

overlying a high velocity cap layer. Substituting SH fundamental matrices from AI.5 into the

propagator matrix in AII.15 gives an expression for the Love wave dispersion function:

Di(Re) = PI/12 [6 (2) (1) + , (1)0 2 )

+ i PP l2G( [ * (2) a(1) - hrh,(1)a(2)]D2(r (AII.17)+ i PIP20102 2a0'2J1 2 1 C,

where the subscripts (1,2) on the generalized vertical wavefunctions and slownesses refer to evalua-

tion at the top (r = R,) and bottom, respectively, of the layer overlying the high velocity halfspace.

The Langer approximation is a uniform asymptotic approximat:on of ,}, i, a(,), a(2), returning the

WKBJ approximation at large values of Iwrl, the Airy approximation at small values of IwrI, and

a smoQth transition betweeu the WKBJ and Airy approximation at intermediate values of IWrT. At

large values of wrj, where the Langer approximation is equivalent to the WKBJ approximation, the

±60 degree oriented poles of individual reflection/transmission/conversion coefficients are oriented

at ±90 degrees with respect to t'r real axis. From the uniformity of the Langer approximation, to
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show that the ±60 degree poles vanish in the full response function, it is sufficient to show that the

±90 degree poles of the WKBJ approximated ray expansion vanish in the full response function.

Two p domains of behavior should be considered, corresponding to traveling wavefunctions and

to exponentially decaying and growing wavefunctions. In the traveling wave domain, the WKBJ

approximation of All.17 becomes

tan(r - 72) = p2/,A& (AII.18)

This is identical to the well known expression for the dispersion of Love waves in a layer over a

halfspace if (r, - r2) is replaced by the vertical slowness in the homogeneous layer times the layer

thickness 11, i.e., (rl - r2) - ' II. Zeros of the dispersion function AII.17 occur at real

value,- of r and p.

In the exponentially decaying p domain, no traveling waves exist in the layer and the dispersion

function defined by AII.17 vanishes. If this happens during the upward propagation of (Dj, D2),

the calculation of Di elements can be started at a higher layer (see Layer Reduction subsection).

This behavior in the exponentially decaying and growing domain follows from the properties of the

generalized vertical wavefunctions and slownesses at large values of Iwr[ in this domain. Specifically,

for large values of IwTI in the exponentially decaying and growing domain of complex p, the Love

wave dispersion function vanishes because the Langer subroutine returns 1 = - and a('); =; _0(2)

(Richards, 1973).

In Ql,e p domain ccrresponding to rays bottoming below the surface but above the lower bound-
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ary, the dispersion function AII.17 may be rewritten as:

(AII.19)

where common terms have been canceled, WKBJ limits of the vertical wavefunctions have been

taken at the lower boundary, and Langer approximated vertical wavefunctions at the surface have

been recombined using the property that j/j(2 ) - 17() - 4o(3). The generalized vertical slowness

i is defined using Airy functions of the type Ai(-(,O) (see AI.2 and AI.1), which have zeros only

on the positive Cp axis. Poles of the dispersion function will be located close to these real zeros.

Since C , is real only for real values of p, the poles of the dispersion function must lie along the real

p axis.

At the real ray parameters corresponding to the reciprocal velocities in the capping layer, branch

cuts are oriented along the real p axis, making a right angle turn at the p origin toward the positive

imaginary p axis. If intrinsic attenuation is assumed with complex velocities given by equations 4

and 5, the poles along the real axis are shifted slightly into the upper half p plane when the inverse

Fourier time transform is of the form f(t) = f F(w)e-iw.

The integration contours leading to the locked mode representation are nearly identical to those

described and shown in Harvey (1981), except for the fact that the contour must be closed in the

upper rather than lower half of the p plane. The difference in contour closure follows from a

difference in the sign convention chosen for the Fourier time transform, which is also reflected in a

Sifference in the sign of the imaginary part of complex velocity and the use of H() instead of jf (2)

for the horizontal wavefunction. The scalar amplitude functions and eigenfunctions are all even

functions of wavenumber k or ray parameter p, and hence, are independent of the sign convention
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used for Fourier transforms. This makes it possible to use Harvey's programs for the construction

of complex spectra and inversion into the time domain simply by changing the sign of the imaginary

part of pole positions found in attenuative structure.

81



Figure 1: Discrete (above) and continuous (below) representations of a gradient in P velocity in a
test model of the crust.

Figure 2: Test models having three different intensities of gradients in an inhomogeneous layer
overlying a homogeneous halfspace. Model 1 is the test model of Spudich and Ascher (1983).

Figure 3: (a) Love and (b) Rayleigh mode dispersion curves calculated in Model 1 using a thin
layered representation of the gradient layer (solid) and the Langer approximation in a continuous
representation of the gradient layer (dashed).

Figure 4: Scalar amplitude factor RA of the fundamental Rayleigh mode plotted against the nondi-
mensional parameter of wavelength/model scale length in the models 1, 2, and 3 shown in Figure
2. The solid curves were calculated by representing the surface gradient layer with 40 thin ho-
mogeneous layers; the dashed curves were calculated using the Langer approximation in a thick,
continuous surface gradient layer

Figure 5: Eigenfunction for vertical displacement, El, for the first higher Rayleigh mode at 0.5
Hz in models 1, 2, and 3 shown in Figure 2. The non-dimensional parameter A/L was calculated
using the mean shear velocity and shear velociiy gradient in the surface gradient layer. c and c'
are respectively the phase velocities calculated using the thin homogeneous layer parameterization
of the gradient layer and a thick continuous gradient layer with the Langer approximation.

Figure 6: Comparison of synthetic seismograms calculated in Model 1 using a thin layered represen-
tation of the gradient layer (solid) and the Langer approximation in a continuous representation of
the gradient layer (dashed). The source is a point double couple at 4.92 km. depth, corresponding
to a vertically dipping strike slip fault, striking to the north, observed at receivers at 450 azimuth. A
step function time dependence of the scalar moment is assumed. Shown are the three components
of particle velocity. The effects of geometric spreading of body waves have been approximately
removed by multiplying each seismogram by range.

Figure 7: Comparison of synthetic seismograms calculated in Model 3 using a thin layered repre-
sentation of the gradient layer and the Langer approximation in a continuous representation of the
gradient layer. The result of the discrete method is shown at each range. The lower amplitude
trace labeled DIP is the difference between the seismograms calculated by the two different param-
eterizations, (D) discrete thin layered and (CL) continuous with the Langer approximation, i.e.,
DIF(t) = SD(t) - SCL(t). An approximate correction for geometric spreading of body waves
has been made.
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Figure 8: Seismograms for the fundamental Rayleigh mode were synthesized in a test anelastic
model. (a) Left: surface normalized displacement at 1 Hz (solid) and 0.1 Hz (dashed). (b) Middle:
P and S velocity at 1 Iz (solid) and 0.1 Hz (dashed). (c) Right: shear attenuation, Q0 1, at 1 Hz
(solid) and 0.1 ]Iz (dashed).

Figure 9: A comparison of synthetics for the vertical component of the fundamental mode Rayleigh
wave using perturbation theory and an exact, complex mode calculation. At each range, the results
of the exact calculation are followed by the differential seismogram obtained by subtracting the
seismogram calculated by perturbation theory from the seismogram calculated by complex modes
and eigenfunctions. Each trace is normalized by its peak amplitude, indicated by the number to
the left of each trace.

Figure 10: A simple crust and upper mantle model MH composed of two homogeneous crustal layers
overlying a homogeneous mantle in a flat earth. Densities and attenuation of MH are those given
by W-Y. Kim (1987). (Note slight negative gradients in MH plotted against depth in a spherical
earth.) Model MG has a single crustal gradient layer and mantle gradient layer. Densities in MIt
assume linear gradients in depth with p = 2.7, 2.9, 3.1, and 3.8 at depths 0, 38 km, 38 kin, and
738 km. Attenuation in MG is assumed to be a relaxation band in pure shear between 0.0001 and
4.0 Ilz, assuming linear gradients with depth in Q- 1 , with QA1 = 0.003, 0.0025, 0.005, and 0.005
at 0, 38 kin, 38 kin, and 738 km. Calculations with the Langer-locked mode assumed continuous
velocity functions in each gradient layer, but fine scale layering was used to simulate the gradients
of MG in the wavenumber integration method.

Figure 11: A comparison of synthetics in model MH (above) and MG (below) computed by the
Langer-locked mode method, summing 10 higher Rayleigh modes. Shown is the vertical displace-
ment for a double couple point source at 30 km depth. The orientation of the double couple
corresponds to a vertically dipping strike slip fault, striking to the north, observed at an azimuth
of 451 . A step function time dependence of the scalar moment is assumed, and the result has been
convolved with a short period WWSSN instrument response.

Figure 12: A comparison of synthetics in model MU1 computed by the Langer-locked mode method,
summing all of the Rayleigh modes in a frequency band up to 2 Hz (above), with synthetics in
model MIt computed by wavenumber integration (below).

Figure 13: A comparison of synthetics in model MG computed by the Langer Langer-locked mode
method, summing all of the Rayleigh modes in a frequency band up to 2 Hz (above), with synthetics
in model MG computed by wavenumber integration and parameterization of gradient layers by thin
homogeneous layers (below).
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